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Federated Learning (FL) Problem Statement Training RD.S; Impact of removing High vs. Low
| | value data points

Léam : M?Chl?e Learning model at & central SELVEL e We observe that there is value in each client e Sampling prohibits flow of gradients

with contributions from data possessed by multiple C . | | | |
. . . deriving update only from clean data points e We use Policy gradients algorithm to train RD.S; Impact of removing data point with

clients (without sharing data). _ . . . . High/Low Relevance Score

e Thus, each client 7 needs to learn a Relevant Data e We assume that each client shares 2 updates in I R Flowers (High)
. . Selector RDS; : gy, - (X,Y) — [0, 1] each round: 50.81 4% —— Flowers (Low)

e The server S trains a model f(8), where 6 is | e 5t - On data sampled by RDS; S . e, ~a Adult (High)
obtained by distributed training and aggregation e In each I"OU.Hd, Cheﬂt ShOUld derive updates Only ° 575 On D, ;60.4 AA; ........... . _:_ Qii'rfr(oL;)r\;V)(High)
over N clients. from clean and non-noisy samples. e Reward Definition: ¢ T "'*fi;;’-:‘ ..... | > Mushroom (Low)

e The hope is that it generalizes on the test dataset | b — PO ) PO+ 51 ol | 0 >:<5
Dtest- S()ll]_t 1011 AppI’OaCh t 1 fi Percentage of Data removed at each client
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FL Objective Server(S)
(. GLm A FLRD selects Relevant data : :
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e Participating clients are connected to the server Figure 3:Accuracy
with limited communication bandwidth, Figure o:

e Privacy of the clients’ data. Training Objective

e Data Irrelevance 5% Attribute Noise :

Conclusion
FLRD Loss Function o
Impact of Noise on FedAvg Lop———Peance Deese I R R e
o 08 o e We proposed FLRD that trains RDS; module at
oact of Nolse on 0 = argming 21( D Gis. (T, y) - Uy, fo(z)) o6 §0.6 o FLRD _each client to select relevant data.
o Performance 04 g 04 e [ixtensive experiments show the efficacy of FLRD
. o2 T swess) C 02 to handle various types of noise.
S e Net effect is to perform weighted ERM with weights °07% clodrgmuﬁ?coatioid&unﬁo& s0 000 clodrgmuzn?coatioioé)oun?a) 500 o In future we'd like to extend RDS; to Active
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Figure 1:Impact of 20% Label Noise



