

Federated Learning (FL)

Learn a Machine Learning model at a central server with contributions from data possessed by multiple clients (without sharing data).

- The server S trains a model $f(\theta)$, where θ is obtained by distributed training and aggregation over N clients.
- The hope is that it generalizes on the test dataset D_{test} .

FL Objective

$$\min_{\theta} l(\theta) = \sum_{k=1}^{\Sigma} \frac{n_k}{n} l_k(\theta);$$

where $l_k(\theta) = \frac{1}{n_k} \sum_{i \in \mathbb{D}_k} l_i(\theta)$

Challenges in Federated Learning

- Unbalanced data,
- non-IID (Independent and Identically Distributed),
- Participating clients are connected to the server with limited communication bandwidth,
- Privacy of the clients' data.
- Data Irrelevance

Impact of Noise on FedAvg

Figure 1:Impact of 20% Label Noise

Is your Data Relevant? Federated Learning with Relevant Data

Lokesh Nagalapatti^{1,*}, Ruhi sharma Mittal^{2,*}, Ramasuri Narayanam³

Problem Statement

- We observe that there is value in each client deriving update only from clean data points
- Thus, each client i needs to learn a Relevant Data Selector $RDS_i : g_{\phi_i} : (X, Y) \to [0, 1]$
- In each round, client should derive updates only from clean and non-noisy samples.

Solution Approach

Figure 2:FLRD Architecture

Training Objective

Net effect is to perform weighted ERM with weights as learned by RDS_i

1 - nlokesh@cse.iitb.ac.in, IIT Bombay; 2 - ruhi.sharma@in.ibm.com, IBM Research-India; 3 - rnarayanam@adobe.com, Adobe Research

Training RDS_i

• Sampling prohibits flow of gradients

• We use Policy gradients algorithm to train RDS_i • We assume that each client shares 2 updates in each round:

• δ_{h}^{t} - On data sampled by RDS_{i}

• $\delta_{f_i}^t$ - On D_i

• Reward Definition:

$$r_i^t(b_i) = \mathcal{P}(\theta^t + \delta_{b_i}^t) - \mathcal{P}(\theta^t + \delta_{f_i}^t)$$
$$\mathcal{P}(\theta) = \frac{1}{|D_V|} \sum_{(x,y)\in D_V} \mathcal{I}(y) = f_{\theta}(x)$$

FLRD selects Relevant data

Figure 3:Accuracy

5% Attribute Noise

Impact of removing High vs. Low value data points

Ablation: D_v Size

Conclusion

• We proposed FLRD that trains RDS_i module at each client to select relevant data.

• Extensive experiments show the efficacy of FLRD to handle various types of noise.

• In future we'd like to extend RDS_i to Active Learning settings.