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Standard Machine Learning (IVIL) Setting
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(machine or data centre)

Validation &
Hyper-parameter
Tuning

Feature Extraction Model Training




Federated Learning (FL) Setting

[McMahan et.al. AISTATS 2017] The paradigm of Federated learning (FL) deals with multiple clients (owning private data)
participate in collaborative training of a machine learning model under the orchestration of a central server.




Federated Learning architecture
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Reference: https://towardsdatascience.com/introduction-to-federated-learning-and-privacy-preservation-75644686b559



One round of Federated Learning

* Client Selection

* Parameter broadcast

* Local client update compute
* Aggregation

* Model update



Federated Learning Setup

* Server needs to learn a global Learning model (GLM) fg: X = Y

* The training data D = D; U --- U Dy is partitioned across N clients

* Server possess a small validation dataset D,, that had iid samples
from ground truth distribution

* In each round, all clients are sampled

* Each client i derives gradients 6; from a subset of dataset for K steps
and sends it back to server

* Server averages the gradients and applies it to GLM



Motivating Experiment
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Problem Statement

* We observe that there is value in each client deriving update only from clean data

points

* Thus, each client i needs to learn a Relevant Data Selector (RDS;) g4,:(X,Y) -
[0,1]

* In each round client can thus sample useful points thereby sharing useful updates

* The training objective thus is:

0 = (11331111112 Z Gig, (T, y) - Uy, fo(x))

i=1 (x,y)eD;



Proposed Approach

* We train RDS using Policy Gradients Algorithms

* Assumption:
* At each round, client sends two updates
. 5]’5 gradient computed from full data

. 65: gradient computed using subset sampled according to RDS

e With this protocol, reward for client i at time t is computed as:
ri(b;) = P(@t +d,,) — PO + (5} )
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Proposed Architecture of FLRD
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Experiment: Irrelevant Data Samples
Detection
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Figure 3: Relevance scores of clients using Adult dataset with closed-set label noise obtained after 100 communication rounds.
The noise percentage in client C, Cs is 10%; C3, Cy is 20%; C5, Cy is 30%; C7, Cg is 40%; Cg, C1¢ is 50%. The data samples
are sorted for the representational purpose only; however, in the training data the samples are shuffled.



Impact of removing High valued Data

Impact of removing data point with
High/Low Relevance Score
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Figure 6: Performance of GLM on Dp.g after remov-
ing data samples with the high/low relevance score at each

client.



Experiment: Closed set Label Noise
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Figure 5: Performance of GLM on Dy, using FLRD and
other baselines across multiple communication rounds with
the original dataset (without noise) and noisy dataset (with
noise).



Experiment: Attribute Noise
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Figure 4: Performance of GLM on test data using F'LRD
and other baselines across multiple communication rounds
with datasets having 5% attribute noise.



Experiment: Robustness to Noise
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Figure 7: Parameter Sensitivity: noise percentage



Effect of Size of D,

Parameter Sensitivity of
Validation Data Size
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Figure 8: Parameter Sensitivity: validation dataset size
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Conclusion

* We proposed an approach called FLRD that is instrumental in
selecting relevant data at each client

* The proposed approach can tackle various types of noise in data
* In future, we like to extent RDS; to Active Learning settings

* The proposed Policy gradients-based method to train RDS; does not
take cost of exploration into account which is substantial in Active

Learning



