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aggregation

Federated A e I S

Learning

(i) Initial model is received from the server

(ii) Training happens on the data available with the
client device

(iii) Model updates are shared with the server




Effect of noise in federated learning
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Problem setup

We want to train machine learning model, fg : X — Y ground truth target distribution Prg.

iid
However, server has [) g ~
machine learning models.

Pr ¢, however |D3| Is too little to train any modern

Therefore, the server seeks help from N clients who have enough training data,
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In addition to noise introduced by client diversity, federated learning also
Data explosion inherits the problem of labeled data having redundancy. Can we
intelligently subset client data to train a robust model efficiently?




Data Subset Selection

Training on an “informative” data subset enables efficient and
robust learning

To select a subset of points one need to rank points based on their
suitability. Ranking could be done using a static or dynamic metric.

Static metric could be diversity or representation among
input features

Most dynamic metrics uses loss gradient. CRUST [1] selects subsets
with most representative loss gradients. GLISTER [2] selects susbet
that improves validation performance the most. GRADMATCH [3]
selects subset that is best able to approximate mean gradient.
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preserving
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Coreset selection for Federated learning

Let loss at server's end be,

1
€S=m Y Ufolx)y)

(‘rﬁy)EDS
Then we wish to solve following optimization problem,

argmin  min Ey(w!, X7) where,
XICD; st | X <b Wi

Ex(WEX]) = w2+ || Y wh;Votd(0") — Vols(6")
jext

where, l‘g is loss associated with jth instance of it" client.



Subset Selection

The optimization problem is weakly submodular ‘

Hence could be solved using greedy algorithm with approximation guarantees — we
use orthogonal matching pursuit (OMP) algorithm

m. Find projection r = Vglf(@t). Vgl (6%)for each j € D; and chose the J with whose \
projection is maximum and add it to Xf.

Solve linear regression problem to find wﬁj for _7 & Xf :

set 7= Vols(0") — 3 e wi;Voli(6")

Repeat the steps with new T until the|r| < € or |X}| < b (budget).
Return Xf.




Results when clients' data is noisy
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Performance comparison of GCFL and baselines with varying closed-set noise percentages. The X-axis indicates the introduced
noise level, and the Y-axis shows test set accuracy. Notably, at x=0, no noise is present. Overall, GCFL outperforms the baselines, except
for the flowers dataset. where subset selection hurts.




Results when clients' data Is noisy
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GCFL for improving training efficiency
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Trade-off between the training time and test accuracy on
the raw datasets without any noise. We set a budget of b = 10%.



Ablation on the size of |Dg|
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Impact of server’s dataset size on GCFL performance
under 20%, 40% close-set noise.



Ablation on client participation
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In this experiment we vary the number of participating clients m in each round. We experiment with CIFAR-10 dataset that is
injected with 40% closed-set noise. Overall we observe that GCFL performs the best.



We developed a gradient
matching optimization algorithm
for data efficient and robust
training for federated learning
settings.

We achieve best trade-offs
between accuracy and efficiency
while effectively mitigating the
adverse impact of noise.

For more details, do visit our poster.
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