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Abstract

Machine Learning models are often susceptible to poor performance on instances
sampled from bad environments. For example, an image classifier could provide
low accuracy on images captured under low lighting conditions. In high stake
ML applications, such as AI-driven medical diagnostics, a better option could be
to provide recourse in the form of alternative environment settings in which to
recapture the instance for more reliable diagnostics. In this paper, we propose
a model called RECOURSENET that learns to apply recourse on the space of
environments so that the recoursed instances are amenable to better predictions by
the classifier. Learning to output optimal recourse is challenging because we do
not assume access to the underlying physical process that generates the recoursed
instances. Also, the optimal setting could be instance-dependent — for example
the best camera angle for object recognition could be a function of the object’s
shape. We propose a novel three-level training method that (a) Learns a classifier
that is optimized for high performance under recourse, (b) Learns a recourse
predictor when the training data may contain only limited instances under good
environment settings, and (c) Triggers recourse selectively only when recourse
is likely to improve classifier confidence. We experiment with synthetic and real
world datasets to show the efficacy of our proposed approach.

1 Introduction

The performance of any supervised learning model depends strongly on the quality of input instances.
However, in practice, instances may be of suboptimal quality when generated in adverse environment
settings. For example, even an expressive image classification model may misclassify an image shot
at an extreme close-up or at a wrong angle or under poor lighting [13, 28]. Despite large training sizes,
such unfavorable instances can deteriorate model performance which can have serious consequences
in high stake scenarios like AI guided crop monitoring [21], automatic disease diagnosis from
images [22], and AI driven accessibility enhancement for the hearing impaired.

Mitigating the effect of such unfavorable instances entails the design of recourse mechanism to
recommend alternative environment settings that yield instances revealing the target class. For
example, in low cost smartphone based medical diagnosis [22] where imaging is performed by
non-experts, such recourse mechanisms can interactively recommend camera settings that yield
images optimal for the downstream diagnosis model. Recourse could be particularly useful for
healthcare on the edge where users can be prompted to adjust their edge-device settings in real-time
to deploy the diagnosis model with higher accuracy. The optimal camera settings however could be
label dependent. For example, the best camera angle for recognizing an aeroplane could be different
from the angle for recognizing poles.

More formally, the problem that this paper seeks to address is as follows. We have an object z in
the physical space (e.g. a crop) with an unknown true label y (e.g. type of disease). Let β ∈ B be

∗nlokeshiisc@gmail.com

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



the environment setting under which we capture a digital representation x of z to diagnose the label
from a downstream classifier fθ(x). Our goal during recourse is to recommend an alternative setting
β′ (if any) to the user for getting a different representation x′ of z where fθ(x

′) is more likely to
be correct than fθ(x). The above problem is an instance of algorithmic recourse, on which there
has been much recent work [30, 29, 23, 8, 32, 11]. These methods recommend recourse actions on
the instance space x, which is difficult to realize on raw data for objects such as images and speech.
Instead we propose to intervene at the level of the environment which generates the instance via an
unknown physical process. We view our contribution under three facets as explained below:

(i) Novel framework for recourse mechanism. We propose RECOURSENET, a trainable recourse
mechanism which recommends modified actions to the end user so that, if acted upon the environment,
it can generate instances with improved accuracy. RECOURSENET consists of three components: (1)
a classifier fθ, (2) a recourse trigger π (3) a recourse recommender network gϕ. Given an instance
(x,β), the recourse trigger π first decides whether to recommend recourse for x. If so, the recourse
recommender gϕ suggests an alternative environment β′. Using these, the user generates a new
instance x′, on which fθ would give the correct label with potentially higher confidence.

(ii) Three level training proposal. The main challenge of RECOURSENET is that we do not assume
access to the latent physical process Z that generates an x′ given a β′ during training. Instead we
train with a fixed labeled dataset containing (latent) objects zi rendered as instances {xij} under
a small but variable set Bi of observed settings {βij}. We show that direct end-to-end training of
a combined likelihood training settles on easy local minima, and fails to provide good recourse.
Training them stage wise also is challenging; we list some of these. For fθ, training on the entire
dataset may be suboptimal since instances in poor settings, where recourse will be asked, may mislead
decisions on good instances. For gϕ, we have no direct supervision of good β for a given (xij ,βij).
For π, simple heuristics like choosing to recourse examples where fθ has low confidence does not
guarantee improved accuracy. Our training strategy employs careful scheduling and decoupling of
the training of the three modules via proxy functions. This achieves substantial gains over simple
end-to-end training and existing methods of training classifiers with data selection based purely on
noise [20, 2, 5, 12, 14, 17, 24, 31].

(iii) Characterization of recourse conditions. We provide theoretical characterizations to identify
the circumstances under which recourse will enhance prediction accuracy. Specifically, we show
that given an instance x, if the recourse recommender suggests a modified environment that is close
to at least one of the training environments resulting in an improved accuracy, then the recourse is
beneficial. Moreover, if there exists some environment which improves the accuracy by a substantial
margin, then even a modestly calibrated recourse recommender can lead to improved accuracy.

2 Related work

Our work is closely related to (i) Algorithmic recourse, (ii) Learning with triage and (iii) Machine
learning with environment perturbation.

Algorithmic recourse: In recent years, there is an increasing interest in designing recourse on the
instance space [30, 29, 23, 8, 32, 11, 25, 9] for a wide variety of applications. For example [30, 29]
aim to improve fairness; [15, 7, 10] aim to train the models so that the predicted output is preserved
under strategic perturbation of the instance space. Another line of work called strategic classification
[7, 15, 10] deals with applying causal interventions to instances. However, these work learn the
recourse action on the instance space, whereas, our goal is to design recourse action on the observed
environment. An additional challenge in our setting is that the impact of the environment on the
instance is latent and we do not assume presence of enough labeled data to learn a generative model
for complex real-world instances under different environments.

Learning with triage: A recent line of work [20, 2, 5, 12, 14, 17, 24, 31] aims to learn when to
outsource a subset of instances to human and assign the rest of the examples to machine so that
machine and human together achieve superior performance than what they would have achieved
independently. However, in our problem, humans do not participate in prediction task but they only
generate new instances under the recommended environments.
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Figure 1: Architecture of Proposed Approach. The chair image on the top does not need recourse but
the bottom image obtains the correct label only after recourse.

Machine learning under environment perturbations: Machine learning models are sensitive to
environments under which data is generated [13, 28]. For example [13], show that simple parametric
perturbations on the Shapenet dataset can flip class labels. In another related work [18] suggests
interventions on the environment using policy gradients to train a recourse model. However, they
assume the availability of a human through out the training loop to generate data in an on-demand
basis. We make no such assumptions and train with a fixed labeled dataset.

3 Proposed approach

In this section, we first formally present our problem, present our training methodology, and then
theoretically characterize the settings under which recourse is possible.
Problem formulation Let Z denote a space of objects, B denote a space of environment settings
which could be real-valued or discrete or mixed, and X denote a space of instances obtained via a
latent physical process Z : Z × B → X . Given a latent object z ∈ Z and an environment setting
β ∈ B, we get an instance x ∈ X = Rdx i.e., x = Z(z,β). Each object z has a label y ∈ Y with
|Y| = K. We are interested in inferring the object’s label using a trained classifier fθ. During training,
for each of the latent set of objects {zi}i∈D, we are given a true label yi and for a small set of settings
Bi ⊂ B, we are given instance {xij}j∈Bi

. Thus, we view the training data as a set of examples
T = {yi, {xij ,βij}j∈Bi

}i∈D We use V to index all the examples, i.e., V = ∪i∈D{{i} × Bi}. As
stated earlier, our goal is to design a recourse mechanism that given a representation x obtained of a
latent object z under given settings β will recommend an alternative β′ if the resultant x′ = Z(z,β′)
is expected to yield more accurate prediction under fθ. Note that Z is not accessible to us during
training and we assume in this work that it is difficult to learn Z or infer z from the available labeled
data T . Our goal instead is to use T to learn both fθ and the recourse mechanism.

3.1 Training RECOURSENET

RECOURSENET consists of three components:

1. A classifier fθ : X × Y → [0, 1] which aims to capture the likelihood of the label y given an
instance x, i.e.fθ(y |x) approximates Pr(y |x).

2. A recourse recommender network gϕ : X ×B×B → [0, 1], that suggests a modified environment
β′ ∼ gϕ(• |x,β) such that if the user (via Z) were to regenerate a new instance x′ using β′ the
classifier is likely to provide higher accuracy.

3. A recourse trigger network π : X × B → {0, 1} which is a binary decision function. Here,
π(x,β) = 1 indicates that we decide to perform recourse on the environment and the β′ suggested
by gϕ should be used to regenerate the instance.

Training objective. Given a set of examples with {yi, {xij ,βij}j∈Bi}i∈D, we aim to find θ, ϕ and
π by solving the following optimization problem:

max
θ,ϕ,π

∑
i∈D
j∈B

[
(1− π(xij ,βij)) log fθ(yi |xij)

+ π(xij ,βij) log fθ(yi |Z(zi, argmaxβ gϕ(β |xij ,βij)))

]
(1)

subject to,
∑

i∈D,j∈B

π(xij ,βij) ≤ b, and π(xij ,βij) ∈ {0, 1} (2)
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Algorithm 1: GREEDYALGORITHM
for training fθ
Require: Data T = {yi, {xij ,βij}j∈Bi}, b
1: V = ∪i∈D{{i} ×Bi}
2: R← ∅, θ0(∅)← TRAIN(F (•, ∅))
3: for k ∈ [b] do
4: for (i, j) ∈ V \R do
5: L[(i, j)] =

F (θk(R ∪ {(i, j)}), R ∪ {(i, j)})
6: (i∗, j∗)← argmax(i,j)∈V \R L[(i, j)]
7: R← R ∪ {(i∗, j∗)}
8: θk+1(R)← TRAIN(F (•, R))
9: Return θk+1(R)

Algorithm 2: TrainRECOURSENET

Require: Train data T = {yi, {xij ,βij}j∈Bi}, b, δ
1: θ̂ ← GREEDYALGORITHM(T, b)

2: ϕ̂, fCF ← RECRECOMMENDER(T, δ, θ̂) // Eq (8)
3: Return θ̂, ϕ̂, fCF

Algorithm 3: RECOURSENET Inference

Require: Test instance (z,x,β), Z (human), θ̂, ϕ̂, fCF

1: π̂ ← RECTRIGGER(x,β, θ̂, ϕ̂, fCF) // Eq (9)
2: ŷ ← argmaxy

[
(1− π̂(x,β))fθ̂(y|x) +

π̂(x,β)fθ̂(y|Z(z, argmaxβ′ gϕ̂(β
′|x,β)))

]
3: Return ŷ

Here, b indicates the maximum number of examples which can undergo recourse. The first term
in the objective (1) (1− π(•, •)) logfθ(• | •) accounts for examples that do not need recourse and
the second term π(•, •)logfθ(• | •) accounts for those that need recourse. End to end training of
the optimization problem (1)— (2) is challenging since we do not have an analytical form of Z and
training such a process will be difficult. We propose to train the three components fθ, gϕ, π in a
carefully designed three-stage process that we describe next.

Training the classifier fθ. Training fθ on the entire training data may be sub-optimal because
instances in poor settings would be subject to recourse, and the classifier should instead focus
on instances after recourse as the above training objective suggests. For training fθ first we es-
chew the involvement of Z and gϕ from the training objective (1) by noting that π(xij ,βij) = 1
only if fθ(yi |Z(zi, argmaxβ gϕ(β |xij ,βij))) ≥ fθ(yi |xij). Therefore, we replace the term
Z(zi, argmaxβ gϕ(β |xij ,βij)) with some instance (xir,βir) for some r ∈ Bi of the same object
zi such that the predicted classification accuracy on xir is better than the original instance xij by
a certain margin ∆. Specifically, given (xij ,βij), we first define Rec∆(θ,xij , yi) as the set of
environments which would improve the log-likelihood of the gold label by at least a margin ∆ i.e.,

Rec∆(θ,xij , yi) = {β′ ∈ Bi | log fθ (yi |Z(zi,β
′)) > log fθ (yi |xij) + ∆} (3)

and then we pose the following training problem to learn θ.

max
θ,π

∑
i∈D
j∈Bi

[
(1− π(xij ,βij)) log fθ(yi |xij) + π(xij ,βij) max

βir∈Rec∆(θ,xij ,yi)
log fθ(yi |xir)

]

subject to,
∑

i∈D,j∈Bi

π(xij ,βij) ≤ b, and π(xij ,βij) ∈ {0, 1}. (4)

Since our budget is limited, one needs to spend it on only those instances which not only suffer from
poor accuracy, but can also lead to new instances that promote fθ to predict the correct label. The
presence of a non-zero margin ∆ ensures such a condition. In Section 3.2, we provide the conditions
under which such a recourse set will exist.

Given π(xij ,βij) ∈ {0, 1}, we first define the set R = {(i, j) |π(xij ,βij) = 1}. Then, we can
write the objective (4) as

max
θ,R:|R|≤b

F (θ,R) =
∑

(i,j)̸∈R

log fθ(yi |xij) +
∑

(i,j)∈R

max
βir∈Rec∆(θ,xij ,yi)

log fθ(yi |xir) (5)

which gives us the problem of subset selection in conjunction with parameter estimation. Note that
the involvement of R as an optimization variable renders the above problem challenging even if
log fθ(y |x) is concave in θ. Thus, we resort to a greedy algorithm [19, 5, 16, 33] to solve this
optimization problem (summarized in Algorithm 1). It is an iterative routine, which picks up an
instance (xij ,βij , yi) at every iteration which will maximize the training objective. Given an update R
at step k ≤ b, it chooses a candidate instance (i, j) which maximizes F (θk(R∪{(i, j)}), R∪{(i, j)}),
where θ(S) = maxθ F (θ, S). We would like to highlight that, by definition of the set Rec∆, inclusion
of (i, j) in R either improves the log-likelihood or keeps it at the same value obtained in the previous
iteration. Formally, we can say that F (θk+1(R ∪ {(i, j)}), R ∪ {(i, j)}) ≥ F (θk(R), R).
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Learning gϕ. Objective (1) is non-differentiable in ϕ because of the argmaxβ gϕ(•) input to fθ and
the unknown Z. We first get rid of the argmax term via the following surrogate:

argmax
ϕ

∑
i∈D,j∈Bi

π(xij)=1

logfθ(yi |Z(zi, argmaxβ gϕ(β |xij ,βij)))

≈ argmax
ϕ

∑
i∈D,j∈Bi

π(xij)=1

max
β

log [fθ(yi |Z(zi,β)) gϕ(β |xij ,βij)] (6)

Next we account for the unknown Z by partitioning all examples in D into two groups — the set Dδ

which contains groups with at least one instance where good βs are available (i.e.maxr fθ(yi|xir) >
1− δ), and the remaining objects D −Dδ where no good instances are available. For the instances
in D −Dδ we need to find a good β to train gϕ. For this we first estimate a function fCF(yi|xij ,β)
that estimates the confidence fθ(yi|Z(zi,β)). That is, it approximates fθ when βij is replaced by β
for the i-th object. We estimate this quantity as the average classifier accuracy on objects with similar
labels and under settings β. In general, for continuous y,β this can be fit as a regression problem.
For discrete y,β, simple fractional estimates were found adequate in our experiments. We compute
these estimates by defining the following counterfactual:

fCF(y |x,β) =

∑
(i,j)∈V

I[yi = y,βij = β]fθ̂(yi = y |xij)∑
(i,j)∈V

I[yi = y,βij = β]
(7)

where I[•] is an indicator function and θ̂ is the output of Algorithm 1. With these two terms, we
maximize the following objective:

max
ϕ

∑
i∈Dδ
j∈Bi

max
r∈Bi

log [fθ(yi |xir) gϕ(βir |xij ,βij)] +
∑
i̸∈Dδ
j∈Bi

log gϕ
(
argmaxβ fCF(yi |xij ,β) |xij ,βij

)
(8)

Computation of π. Our training objective (1) suggests that π(xij ,βij) = 1 only if fθ(yi |xij) <
fθ(yi |x′

ij = Z(zi,β
′
ij)) where β′

ij = argmaxβ gϕ̂(β |xij ,βij)). Since the recourse budget is
limited, we cannot obtain x′

ij for all instances to compute π. Therefore, in practice, we use
fCF(•|xij ,β

′
ij) as a proxy for fθ(• |x′

ij = Z(zi,β
′
ij)). Specifically, we set

π(xij ,βij) = I[fCF(ymax |xij ,β
′
ij) > fθ̂(ymax |xij)] where ymax = argmax

y
fθ̂(y |xij) (9)

We call our overall training method as RECOURSENET, which is summarized in Algorithm 3.

3.2 Theoretical Analysis

In this section we present the conditions on θ, ϕ, π under which RECOURSENET will be successful in
providing recourse. The proofs of the propositions are given in Appendix B.

Proposition 1 Assume that Z is Lβ-Lipschitz with respect to β, the model log fθ(y |x) is Lx-
Lipschitz with respect to x. Given i ∈ D and j ∈ Bi, if the set Rec∆(θ,xij , yi) is non-empty and the
recourse network gϕ gives a modified β′

ij such that ||β′
ij − β|| ≤ ϵ for some β ∈ Rec∆(θ,xij , yi),

then, for ∆ > tLxLβϵ with t > 1 we have:
log fθ(yi |Z(zi,β

′
ij)) > log fθ(yi |xij) + (1− 1/t)∆ (10)

The above proposition suggests that as long as gϕ(• |xij ,βij) is close to some β ∈ Rec∆(θ,xij , yi),
then the accuracy provided by the classifier fθ improves. One of the key assumption of this proposition
is the non-emptiness of Rec∆(θ,xij , yi). In the following proposition, we find the requirements for
such conditions in terms of the true classifier fθ∗ .

Proposition 2 Let us assume that the true conditional distribution of y given x is fθ∗ , log fθ(y |x) is
Lθ-Lipschitz w.r.t. θ and ||θ− θ∗|| ≤ δ. Given i ∈ D and j ∈ Bi, if Rec∆0

( θ∗,xij , yi) is non-empty
for some ∆0 > 2Lθδ, then Rec∆(θ,xij , yi) is non-empty for ∆ < ∆0 − 2Lθδ. Moreover, if the
recourse network gϕ gives us a modified β′

ij such that ||β′
ij −β|| ≤ ϵ for some β ∈ Rec∆(θ,xij , yi),

then, for ∆0 > 2Lθδ + tLβLxϵ with t > 1 we have:
log fθ(yi |Z(zi,β

′
ij)) > log fθ(yi |xij) + (1− 1/t)(∆0 − 2Lθδ) (11)
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Dataset #Train
objects (|D|)

#Renderings
(|Bi|)

Environment
(B)

#Classes
|Y|

#Test
objects

Synthetic 1200 8 6 dimensional bit-mask 4 200
Shapenet-Large 2500 4 (view, zoom level, light color) 10 800
Shapenet-Small 2500 2 (view, zoom level, light color) 10 800

Speech Commands 2000 5 (pitch, speed, noise) 20 60
Skin Lesion 1400 4 (zoom, illumination, contrast) 7 70

Table 2: Summary of datasets used. #Train objects denotes the number of (latent) objects that
are available in the dataset. #Renderings denotes the number of environment settings under which
each such object zi is rendered. Environment column denotes the different parameters that can be
instantiated to render x from z. Finally, #Test objects denotes the number of (latent) objects available
in the test dataset. Unlike train, we render each test object under all possible environments β ∈ B.

4 Experiments

In this section, we experiment with several datasets to show that RECOURSENET’s training strategy
outperforms existing methods or simpler alternatives. Our experiments are designed to answer the
following research questions through empirical evaluations:

1. In the training of fθ, what is the impact of subsetting the training set when compared with default
alternatives like training on all available labeled data.

2. In deciding when to trigger recourse, how effective is our method, in contrast to just asking
recourse on low confidence examples?

3. In training the recourse recommender, how important was it distinguish between objects with
and without good βs? During inference, how important is it to make instance specific recourse
recommendations instead of a single ideal beta?

We could not find any existing benchmark that records different environment settings under which
objects are rendered. Thus we generate datasets that admit causal relationship across x,β, z and y as
follows: we first sample a class label from the class prior y ∼ Pr(•) and then we choose Bi settings
by sampling βs drawn from a Pr(β | y). Finally we generate x under the Bi chosen environments.
We generate 4 datasets of varying complexities as shown in the Table 2.

Shapenet-Large Shapenet consists of three dimensional models of many kinds of objects that can
be mapped into two dimensional pixel maps under various environments [3]. Each environment
β represents the camera settings provided by (view, zoom level, light color). We select
|Y| = 10 classes and draw 250 objects from each class to obtain a total of |D| = 2500 objects. For
each object, we draw Bi = 4 different βs from a set of |B| = 9 possible camera settings and render
them under these settings. Among the four environments, we ensure that each zi contains a β that
renders it properly with a probability 0.8. To make the task challenging, we corrupt the rendered xij

using various kinds of noise from the image corruptions library2. In particular, we corrupt xij if βij

is not a good choice for zi so as to make learning of such settings difficult for fθ.

Shapenet-Small. This dataset differs from Shapenet-Large in the number of environments under
which each object is rendered. Among the two environments, each zi contains a good β with
probability 0.6. This dataset is more challenging than Shapenet-Large because of scarcity in the
number of objects that contain atleast one xij that produces good accuracy. This makes the objective
(6) difficult to learn. Here also we add noise to xij in a manner similar to Shapenet-Large. The test
set for both Shapenet-Large and Shapenet-Small is same, and contains 80 objects per class; each of
them rendered under all 9 camera settings β thus contributing to 7200 images.

Speech Commands Dataset. This dataset consists of textual commands that can be converted to
speech under different environments β defined by (pitch, speed, noise) sampled from B with
|B| = 60. We select |Y| = 20 commonly used Alexa commands and render them to speech signals
with a frame width of 0.5 seconds using Google text to speech library 3. These speech signals are
then processed into 2D mel spectrograms [27]. In particular, the training dataset consists of 2000
zi rendered under |Bi| = 5 environments each thereby contributing to 10000 samples. The test set
contains 200 zis rendered under all 60 βs thereby containing 12000 speech samples.

2https://github.com/bethgelab/imagecorruptions
3https://cloud.google.com/text-to-speech
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Training Data Shapenet-Large Shapenet-Small Speech-Commands Skin-Lesion
Full-data (Baseline) 71.93± 0.63 62.97± 0.80 51.85± 1.08 56.42± 0.80
One-shot subsetting 72.63± 0.54 65.55± 1.11 54.66± 1.2 60.89± 1.11

Iterative greedy (Ours) 77.14 ± 0.63 74.13 ± 1.10 65.76 ± 1.44 68.62 ± 0.90

Table 3: Comparing classification accuracy under different strategies for subsetting data for training
fθ at 100% recourse. The table shows mean ± one std. deviation of accuracies obtained over 5 seeds.

Skin-Lesion Dataset This dataset consists of images of skin captured using smartphone and the task
is to classify among seven different skin conditions (|Y| = 7). The dataset is taken from Kaggle 4

and we synthetically generate 9 different environments (|B| = 9) where each environment is defined
by (zoom, illumination, contrast). The training dataset contains 1400 objects zi rendered
under |Bi| = 4 environments each and the test dataset contains 70 objects rendered under all 9
environments.

Further details about dataset preparation and results on synthetic datasets are provided in Appendix C.

Models and Hyper-parameters. We use the same model architecture and hyper-parameters across
datasets. We used Adam optimizer with default learning rate of 10−3 to optimize all our objectives.
The architecture for fθ is a Resnet18 model trained from scratch. We use budget b = 1000 but to
avoid training the model iteratively b times, we select 10 instances into R at line 5 of algorithm 1 per
iteration. For gϕ too we train a Resnet18 model from scratch. We obtain 512-dimensional embedding
for β as an average of embeddings of its individual components which are trained end-to-end. We
concatenate the embeddings of β with last layer embeddings of x from Resnet18 to obtain the input
embedding which is then fed to a 3-layered neural network that predicts the recourse β. We learn gϕ
using the objective 8 where the Dδ is computed by sorting the minimum group loss (minjL[(i, j)])
and then selecting the first few groups that produce least min loss into the set Dδ. The first few are
chosen so that the average confidence fθ(yi|xij ,βij) of examples in Dδ has the maximum gap with
corresponding average in D −Dδ .

RQ1: Impact of subsetting the training data in learning fθ We compare our iterative greedy
proposal to train fθ with two other baselines as follows:

1. Full data: Here we train fθ over the entire training dataset.

2. One-shot subsetting: Here we subset all b examples at once unlike our iterative algorithm 1. i.e.
we compute L(i, j) for all samples given θ0(∅) and choose the ones that incur top-b values into R

and then maximize F (•, R) to obtain θ̂.

Table 3 shows the recourse accuracy of fθ at 100% recourse when learned under these three different
training strategies. For all three methods we use gϕ trained using our objective (8) to obtain recourse
recommendations. We observe that our iterative greedy algorithm to train fθ consistently outperforms
the model trained with the entire data. This establishes the importance of training classifiers differently
when recourse is an option. A classifier that is trained only on instances with ’good’ environment
settings is more suitable for classification under recourse, even in data hungry deep learning models.
Simply subsetting by removing the worst b instances is significantly worse than our iterative algorithm.

RQ2: Evaluating our method of triggering recourse We compare our proposal for fθ and π
with four other baselines and the first two are adapted from the work of [24].

1. Score based recourse trigger: Here, we train fθ on entire training data. Then during inference,
given a budget b, we seek recourse on the least b confident predictions of fθ.

2. Full automation based recourse trigger: Here also, we train fθ on entire training data. Then
for recourse trigger, we learn an error predictor trained on the loss incurred by the classifier on
training examples. During inference, for a budget b, we seek recourse on those examples that
incur the b highest predicted losses. Details about the neural architecture of the error predictor is
provided in Appendix E.

3. Random trigger: We train fθ on entire dataset and apply recourse on instances selected
randomly.

4https://www.kaggle.com/code/kmader/deep-learning-skin-lesion-classification/
notebook
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(a) Shapenet-Large (b) Shapenet-Small (c) Speech Commands (d) Skin-Lesion

Figure 4: Variation of classification accuracy after recourse against the budget b, i.e., the maximum
number of instances selected for recourse.

(a) Shapenet-Large. (b) Shapenet-Small. (c) Speech Commands. (d) Skin-Lesion.

Figure 5: Variation of classification accuracy after recourse against the budget b, i.e., the maximum
number of instances selected for recourse. The figures show mean recourse accuracy ± one std.
deviation obtained over five seeds.

4. Random-greedy trigger: Here we train fθ using our greedy algorithm 1 and then apply recourse
on instances selected randomly.

Figure 4 summarizes the comparison of recourse trigger π against the baselines. Unlike our greedy
algorithm, methods that propose full training for fθ are inferior at 0% recourse. The steepness
in the recourse accuracy for our proposed π is more in comparison to other baselines because it
prioritizes recourse not just the instances that suffer from poor accuracy for recourse but also the
ones that respond better to recourse by means of modelling the expected recourse accuracy. Our
method suggests recourse only when the expected gains that we calculate using fCF is positive, and
performs much better than methods based purely on current classifier confidence or an estimate of
the confidence. We see that both the random baselines perform much worse and follows the expected
linear trend of recourse accuracy as we increase the recourse budget. These results establish the
impact of our method of triggering response.

RQ3: Evaluating training methods of recourse recommendation gϕ We compare our gϕ against
four other methods as follows.

1. Only ϕ: This model takes a form similar to gϕ and learns to recourse the instances (i, j) that
incur top 50% losses in the training data to βir where r is obtained from argmaxr fθ(yi |xir).

2. RECOURSENET without fCF: This model trains gϕ using the objective (6).

3. Constant: This method entails a constant β recommendation independent of the features (x,β).
We select constant β as the one that achieves the best training accuracy.

4. IRM: In this baseline, instead of gϕ we learn networks that estimate accuracy of an input xij on
a counterfactual setting β using ideas from Invariant Risk Minimization literature. We extract
representations of input (x) by fine tuning a Resnet18 model with pre-trained Imagenet weights.
This forms the Φ network of IRMv1 objective in [1]. The representations are multiplied with a
scalar w = 1 and then concatenated with representation of the counterfactual environment β for
which we want to estimate the accuracy. We use a linear layer to embed the environments (β).
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(a) Shapenet-Large (b) Shapenet-Small (c) Speech Commands

Figure 6: Accuracy of different recourse recommenders for different classes.

(a) Stability fθ (b) Stability gϕ

Figure 7: Stability of our proposals in solving 1

The concatenated representations are then fed to a fully connected network that aims to predict the
classifier’s confidence (fθ(y|x)) on the examples. For Triage, since these methods directly model
the counterfactual accuracy P (y|x,β) ∀β, we use these predicted values in place of our prior fCF

term in Eq. (9). The classifier is trained on the full data.

The first three baselines are designed to perform an ablation study of our proposal, including assessing
the importance of finding the objects that have no good β and thereby including them in the set
D −Dδ in the gϕ objective (8). The results presented in Figure 5 shows the following observations.
(1) Only ϕ model performs poorly on Shapenet-Large and performs on par with Constant method on
other datasets. Because many groups do not have β that produce good accuracy, Only ϕ receives noisy
supervision during training. (2) RECOURSENET without fCF achieves a decent fit on Shapenet-Large
and Specch datasets but fails miserably on the Shapenet-Small dataset. Because Shapenet-Small has
|Bi| = 2, we can see that 50% examples force the recourse recommender to predict the input β as
is under the joint objective (6). This renders identity function as a strong local maxima which the
model struggles to avoid during training. This brittleness of RECOURSENET without fCF to objects
with no good β motivates the need for our current objective 8. (3) The supervision provided by the
fCF term in our gϕ objective (8) guides instances in the set D−Dδ and thus achieves better recourse
accuracy. (4) The IRM method is difficult to train as seen by the large variance, and performs poorly.
This method does not sufficiently exploit the fact that the training data includes multiple views of the
same object. Also, it suffers because the classifier is trained on full data. (5) One good competitor
to our gϕ across the datasets is constant prediction which brings us to the other half of RQ3 – Is an
instance independent constant β recourse recommendation always advisable?

We try to answer this question by probing the average error incurred by these methods for each class.
Figure 6 summarizes the results for 5 classes which shows that unlike baselines, our gϕ garners
modest to best accuracy across classes consistently. The performance of constant method in the
Shapanet datasets can be attributed to the fact that many objects in it admit a unique good β. However,
this is not the case in the speech dataset because we found no one β to dominate in performance
across classes. As a result, the recourse accuracy suffers in the speech dataset with constant β
prediction. Thus we conclude by saying that it is always good to make instance specific recourse
recommendations.
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(a) Shapenet-Large (b) Shapenet-Small

Figure 8: This figure shows the histogram of the counts of different βs predicted against each class
for Shapenet-Large and Shapenet-Small datasets.
5 Stability of our proposals in solving the overall objective 1

In Figure 7(a) we plot the value of the overall objective 1 through the different stages of the
fθ training algorithm and in Figure 7(b) we plot for the second gϕ training phase. In both
cases we observe that the value of the overall objective increases even though the two stages are
not directly solving for Equation 1. This provides empirical evidence about the stability of our method.

Now, we discuss about the details on how we evaluated the overall objective in these two
stages. For the fθ training phase we evaluate the objective using R and Rec∆(θk,xij , yi)} as proxies
for π and gϕ which have not yet been trained. For the gϕ training since π is not available, we assume
full recourse and focus on the impact of βs predicted by gϕ on recourse objective.

6 Predicted Environments by gϕ

In this experiment, we plot the counts of different βs predicted by our gϕ model against each class
for Shapenet-Large and Shapenet-Small datasets. For Shapenet-Large, we see that the recourse
recommender never predicted 4 out of 9βs for any class and thus those bars are excluded from the
figure 8(a). However, this is not the case for Shapenet-Small and hence all 9βs are included.

7 Conclusions

In this paper, we proposed RECOURSENET that aims to make recourse recommendations to instances
that are sampled from poor environments. RECOURSENET has three components: (1) classifier fθ,
(2) Recourse recommender gϕ and (3) Recourse trigger π. We learn these components using a novel
three level training objective without having to model the latent physical generator Z. Moreover, our
theoretical results assure that under mild conditions, recourse is beneficial. These results in effect,
press the need for recourse in order to obtain quality predictions from a model. The experiments on
synthetic and real-world datasets show that our method outperforms several baselines.

Our work opens up many areas of future work. It would be interesting to extend RECOURSENET to
regimes where the space of environment variable βs can be continuous. Also, multiple views of a
test object collected during recourse could be exploited to improve future decisions.
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A Errata

Fixed in the revision.

B Proofs of technical results

B.1 Proof of Proposition 1

Proposition 1 Assume that Z is Lβ-Lipschitz with respect to β, the model log fθ(y |x) is Lx-
Lipschitz with respect to x. Given i ∈ D and j ∈ Bi, if the set Rec∆(θ,xij , yi) is non-empty and the
recourse network gϕ gives a modified β′

ij such that ||β′
ij − β|| ≤ ϵ for some β ∈ Rec∆(θ,xij , yi),

then, for ∆ > tLxLβϵ with t > 1 we have:
log fθ(yi |Z(zi,β

′
ij)) > log fθ(yi |xij) + (1− 1/t)∆ (12)

Proof. Recall that by definition in Eq. (3) in our main submission,
Rec∆(θ,x, y) = {β′ | log fθ (Z(zi,β

′), y) > log fθ (y |x) + ∆} (13)
Thus, for β′

ij ∈ Rec∆(θ,xij ,βij) we have,

log fθ(yi |xij) < log fθ(yi |x′
ij = Z(xij ,β

′
ij))−∆ (14)

= log fθ(yi |Z(zi,β)) + log fθ(yi |x′
ij = Z(xij ,β

′
ij))

− log fθ(yi |Z(zi,β))−∆

(1)
< log fθ(yi |Z(zi,β)) + Lx||x′

ij − Z(zi,β)|| −∆

= log fθ(yi |Z(zi,β)) + Lx||Z(zi,β
′
ij)− Z(zi,β)|| −∆

(2)
< log fθ(yi |Z(zi,β)) + LxLβϵ−∆

(3)
< log fθ(yi |Z(zi,β)) + (1/t− 1)∆

The inequality (1) is due to the Lx Lipschitz-continuity of fθ(y |x) in x. The inequality (2) is due to
the Lβ Lipschitz-continuity of Z(z,β) in β. The last inequality (3) follows from the assumption
that ∆ > tLxLβϵ.

B.2 Proof of Proposition 2

Proposition 2 Let us assume that the true conditional distribution of y given x is fθ∗ , log fθ(y |x)
is Lθ-Lipschitz w.r.t. θ and ||θ − θ∗|| ≤ δ. Moreover, we define the following quantities:

∆(i,j) = max
r∈Bi

[log fθ∗(yi |xir)− log fθ∗(yi |xij)] (15)

A = {(i, j) ∈ V |∆(i,j) > 0} (16)
∆0 = min

(i,j)∈A
∆i,j (17)

Then, we have the following results:

1. For (i, j) ∈ A, Rec∆0
(θ∗,xij , yi) is non-empty.

2. Given (i, j) ∈ V , if we have δ < ∆0

2Lθ
, then Rec∆(θ,xij , yi) is non-empty for ∆ <

∆0 − 2Lθδ

3. If the recourse network gϕ gives us a modified β′
ij such that ||β′

ij − β|| ≤ ϵ for some
β ∈ Rec∆(θ,xij , yi) with ∆ < ∆0 − 2Lθδ, then, for ϵ < (∆0 − 2Lθδ)/(tLβLx) with
t > 1, we have:

log fθ(yi |xij) < log fθ(yi |Z(zi,β
′
ij))− (1− 1/t)(∆(i,j) − 2Lθδ) (18)
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Proof. The statement (1) is true by definition.
log fθ(yi |xij) = log fθ∗(yi |xij) + log fθ(yi |xij)− log fθ∗(yi |xij) (19)

(1)

≤ log fθ∗(yi |x = Z(zi,β))

+ log fθ(yi |xij)− log fθ∗(yi |xij)−∆0 (20)
= log fθ(yi |x = Z(zi,β))

+ log fθ∗(yi |x = Z(zi,β))− log fθ(yi |x = Z(zi,β))

+ log fθ(yi |xij)− log fθ∗(yi |xij)−∆0 (21)

≤ log fθ(yi |x = Z(zi,β))− (∆0 − 2Lθδ) (22)
Thus Rec∆(θ,xij , yi) is non-empty for ∆ < ∆0 − 2Lθδ. Next, we have

log fθ(yi |x = Z(zi,β))− (∆0 − 2Lθδ)

= log fθ(yi |x′
ij = Z(zi,β

′
ij))

+ log fθ(yi |x = Z(zi,β))− log fθ(yi |x′
ij = Z(zi,β

′
ij))− (∆0 − 2Lθδ)

≤ log fθ(yi |x′
ij = Z(zi,β

′
ij)) + LxLβϵ− (∆0 − 2Lθδ) (23)

The last inequality is due to the Lipschitzness of fθ with respect to x, the Lipschitzness of Z with
respect to β; and, ||βij − β|| ≤ ϵ.

B.3 Analysis of our greedy algorithm

We first start with an assumption that log fθ is algorithmically stable, i.e., if it is trained upon a
dataset V of size N , then ||θ∗(V ) − θ∗(V ′)|| < ρ

N , where |V \V ′| = |V ′\V | = 1, i.e., V and V ′

has N − 1 elements in common and therefore, V ′ is obtained by replacing one element of V . It
is well known that minimizing regularized convex and L-Lipschitz loss functions are stable with
ρ = 2L/λmin where λmin is the minimium eigenvalue of the regularized convex loss [26, Chapter
13, Regularization and stability]. For Polyak-Lojasiewicz (PL) loss functions with PL-coefficient
µ [4, corollary 4], we have ||θ∗(V )− θ(V ′)|| < 2L2

µ(N−1) ≤
4L2

µN for N > 2. Under this assumption,
we state the following result:

Proposition 3 Suppose, log fθ is stable, i.e., ||θ∗(V )− θ∗(V ′)|| < ρ
N for some constant ρ where V ′

is obtained by replacing one element of V . Then, let us assume that the true conditional distribution
of y given x is fθ∗ , log fθ(y |x) is Lθ-Lipschitz w.r.t. θ. Moreover, we define the following quantities:

∆(i,j) = max
r∈Bi

[log fθ∗(yi |xir)− log fθ∗(yi |xij)] (24)

A = {(i, j) ∈ V |∆(i,j) > 0} (25)
∆0 = min

(i,j)∈A
∆i,j (26)

Now, note that if (i, j) ∈ A, then it is obvious that Rec∆0
(θ∗,xij , yi) is non-empty. Assume that

|A| > b, ||θ(R(0))− θ∗|| < δ < ∆0

2Lθ
and |V | is large enough so that |V | > 2Lθρb

∆0−2Lθδ
Now if R(k) is

solution in R during the k-th iteration of our greedy algorithm, then the greedy algorithm will choose
(i, j) at each step k ∈ {1, .., b} so that

F (θ∗(R(k) ∪ (i, j)), R(k) ∪ (i, j)) > F (θ∗(R(k)), R(k)) (27)

when 0 < ∆ < ∆0 − 2Lθ

(
δ + ρb

|V |

)
.

Proof. Assume that during k-th iteration, we have the following snapshot of the training instances:

V (k) = {(xi1,j1 , y1), . . . , (xim,jm , ym)︸ ︷︷ ︸
V \R(k)

, (x′
i1,j1 , y

′
1), . . . , (x

′
ia,ja , y

′
a)︸ ︷︷ ︸

Instances after applying recourse on R(k)

} (28)

We add atmost one element (i, j) to R(k) to obtain R(k+1). This can be seen as replacing atmost one
instance (i, j) in V with a new instance obtained after applying recourse on (i, j). As the model is
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Figure 9: Causal Model that depicts the data generating process of human.

stable, then we have:

||θ∗(R(k+1))− θ∗(R(k))|| ≤ ρ

|V |
(29)

Since we start with ||θ∗(R0)− θ∗|| ≤ δ, by consecutively applying triangle inequalities, we have:

||θ∗(Rk)− θ∗|| ≤ δ +
ρk

|V |
≤ δ +

ρb

|V |
(30)

Now, from the first part of Proposition 2, we show that, whenever Rec∆0
(θ∗,xij , yi) is non-empty

with ∆0 > 2Lθ

(
δ + ρb

|V |

)
, then Rec∆(θ

∗(R(k)),xij , yi) is nonempty for ∆ < ∆0−2Lθ

(
δ + ρb

|V |

)
.

Hence, there will be b instances for which Rec∆(θ
∗(R(k)),xij , yi) is non-empty. Now we have:

F (θ∗(R(k) ∪ (i, j)), R(k) ∪ (i, j))− F (θ∗(R(k)), R(k))

= F (θ∗(R(k) ∪ (i, j)), (R(k) ∪ (i, j)))− F (θ∗(R(k)), R(k) ∪ (i, j))

+ F (θ∗(R(k)), R(k) ∪ (i, j))− F (θ∗(R(k)), R(k)) (31)
(1)

≥ F (θ∗(R(k)), R(k) ∪ (i, j))− F (θ∗(R(k)), R(k))

Inequality (1) is due to the fact that: F (θ∗(R(k)∪(i, j)), (R(k)∪(i, j))) ≥ F (θ∗(R(k)), R(k)∪(i, j)).
Now given this element (i, j), we will choose it for recourse if Rec∆(θ∗(R(k)),xij , yi) is non-empty.

Now since there are at least b elements for which Rec∆(θ
∗(R(k)),xij , yi) is non-empty, we will find

at least b− k elements which would be chosen for recourse at this k-th step. For those elements, we
will have βir ∈ Rec∆(θ

∗(R(k)),xij , yi) and then we have:

F (θ∗(R(k)), R(k) ∪ (i, j))− F (θ∗(R(k)), R(k)) = log fθ(yi |xir)− log fθ(yi |xij) > 0 (32)
Thus, there will be at least b− k elements for which

F (θ∗(R(k) ∪ (i, j)), R(k) ∪ (i, j))− F (θ∗(R(k)), R(k)) > 0 (33)
Since, we choose (i, j) to be the one with highest gain, we conclude that, for any step k ≤ b, the
instance (i, j) chosen for recourse, the underlying gain would be strictly positive.

C Additional details about experimental setup

Causal Model. The causal model that depicts the relationships between the variables x,β, y, z in
our dataset is shown in the Figure 9

Synthetic Dataset. We generate a 4 class synthetic real valued dataset with |D| = 1200 objects
zi ∈ Z = Rdz with dz = 6. The objects zi are sampled from class dependent Isotropic Gaussian
distribution N (µy,Σy) where Σy = Diag[0.1, 0.25, 0.1, 0.1, 0.25, 0.1] for all y ∈ Y . The means
µ0 = [−1, 0, 0.5, 0.5, 0, 0], µ1 = [1, 0, 0.5, 0.5, 0, 0], µ2 = [0, −1, 0, 0, −0.5, −0.5], µ3 =
[0, 1, 0, 0, −0.5, −0.5]. Then, we draw βij ∼ Unif{0, 1}dz such that they have exactly 3 bits set
to 1 and none of them have both βij [0] = βij [1] = 1. Finally, we set xij = zi ⊙ βij for i ∈ D
and j ∈ Bi where |Bi| = 8. The purpose of gϕ thus is to predict which bits in the input should be
unmasked so as to make fθ predict the correct label.

Generating Shapenet Datasets. As mentioned in our main submission, we work with two ver-
sions of Shapenet dataset namely Shapenet-Large and Shapenet-Small which differ in the group
size |Bi|. While Shapenet-Large has 4 renderings for each zi, Shapenet-Small has only 2 ren-
dering for each zi. Recall that we corrupt certain xij if βij used to render them is inherently
noisy. Here, we expand more on how we inject noise. We use imagecorruptions python li-
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Class
front view front view top view left&side left&side front&top front&top side&top side&front
zoom in normal zoom zoom in zoom out normal zoom normal zoom zoom out zoom out zoom out
yellow white yellow pink white white green pink yellow

Aeroplane ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bench ✓ ✓ ✓ ✓
Bus ✓ ✓ ✓ ✓ ✓

Cabinet ✓
Chair

Display
Knife ✓ ✓
Lamp ✓ ✓ ✓ ✓ ✓

Speaker
Gun ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 10: This table denotes the classes that admit noisy β. ✓ indicates that images having the
corresponding (y,β) are corrupted w.p. 0.5. We picked (β, y) pairs through visual inspection and
decided to corrupt a random subset of them so as to make the learning task more challenging for fθ
thereby amplifying the need for recourse.

brary5 for injecting noise to xij . It provides us API for 15 different types of noise. We se-
lected 9 of them namely {gaussian_noise, shot_noise, impulse_noise, frost, fog,
brightness, elastic_transform, pixelate, jpeg_compression}. Each of these APIs ac-
cept an RGB image as input and outputs an RGB image with noise added to it. For each label y, we
select a set of βs so that any image generated under these settings (β, y) will be noisy with certain
probability. Let us denote this set of noisy β for a given y as βnoise

y . Once we obtain yi,βij , zi
following the sampling procedure depicted by the Figure 9, we render the corresponding xij under
one of the following two cases: (a) if βij ∈ βnoise

yi
, we render xij in a noisy manner w.p. 0.5 i.e. we

subject the image rendered using (βij , zi) to one of the 9 noises selected uniformly at random thereby
rendering a noisy xij . (b) if βij ̸∈ βnoise

yi
, we simply render xij in the setting (βij , zi) without

adding any noise to it.

Generating Speech Commands Dataset. For this dataset, we choose 20 commands with Y =
{cancel, disable, enable, decrease, increase, good morning, good night, lock, open,
door, pauseplay, set, show, skip, snooze, start, stop, turn off, turn on}. We chose
rhyming words so as to make the classification task harder. Unlike Shapenet, we decided to embed
noise in sample generation as part of β itself so as to simulate real life scenarios. Because we work
with Mel spectograms (images), we fixed the model architecture for fθ, gϕ to be the same as that of
Shapenet.

Generating Skin Lesion Dataset. This dataset consists of images of skin captured us-
ing smartphone and the task is to predict different skin conditions (|Y| = 7) namely
{melanocytic nevi , melanoma, basal cell carcinoma, actiniv keratoses an,
vascular lesions, benign keratoses lik, dermatofibroma}. The dataset is taken from
from Kaggle 6 and synthetically generated environments. We generate images under 9 different
environments (|B| = 9) where each environment is defined by (zoom, illumination, contrast). For
zoom, we assume that the original image is at 100% zoom level and create two additional zoom levels
namely 175%, 250%. For illumination, we chose three values to simulate the impact of a skin image
captured in light, dark, and the original image. For contrast also we chose three values and simulated
low, normal and high contrast skin images. We fixed the model architecture for fθ, gϕ to be the same
as that of Shapenet.

D Results on Synthetic Dataset

Here, we compare the performance of various recourse trigger and recourse recommender methods on
the synthetic dataset. We summarize the results in Figure 11 — we make the following observations.
(1) Since the generated dataset is not linearly separable, the accuracy of fθ is 77%. Moreover, the
greedy algorithm for training fθ improves the accuracy by 3% over a model that trains on all data.
(2) The accuracy provided by both recourse trigger π and recourse recommender gϕ improves as we

5https://github.com/bethgelab/imagecorruptions
6https://www.kaggle.com/code/kmader/deep-learning-skin-lesion-classification/

notebook

17

https://www.kaggle.com/code/kmader/deep-learning-skin-lesion-classification/notebook
https://www.kaggle.com/code/kmader/deep-learning-skin-lesion-classification/notebook


(a) Recourse trigger π (b) Recourse recommender gϕ

Figure 11: Recourse accuracy vs recourse fraction i.e. maximum instances that can undergo recourse
for Synthetic dataset. Panel (a) shows performance comparison of recourse trigger π with baselines.
Panel (b) shows performance comparison of recourse recommender gϕ with a constant predictor.

(a) Shapenet-Large (b) Shapenet-Small (c) Speech-Commands

Figure 12: This shows the min loss in each group in a sorted order. We use this to select the groups
into Dδ. As discussed in the main submission, the groups in Dδ have atleast one good feature and
thus its min loss must be very close to 0. In this view, we set Dδ = the first 1800 min loss groups for
Shapenet-large and the first 1250 min loss groups for shapenet-small. For Speech commands we set
the first 1400 groups as part of the set Dδ .

increase b. We notice in the dataset that it is necessary to have 1st bit unmasked for instances labelled
{y = 0, y = 1} and 2nd bit unmasked for the classes {y = 2, y = 3} so that fθ can predict them
correctly. Our gϕ is able to learn this pattern using cues from the remaining bits as expected. (3)
We observe a linear trend in improvement until about 48%; beyond which we observe a flat trend
at 100% recourse accuracy. This is because β are randomly generated which leaves us with ≈ 50%
bad instances that require recourse. Only ϕ performs poorly because of arbitration in the supervision
provided by the pseudo labels that are committed while training. The model has no flexibility to pick
and choose alternative good βs in accordance with gϕ for instances where β prediction becomes hard.
(4) Constant prediction on the other hand fails to emit instance specific recourse recommendation and
hence suffers to improve the recourse accuracy consistently.

E Models and Hyper-parameters

Moved to the main paper

F Additional Baselines

We added new baselines to compare with RECOURSENET. In all these we train fθ on the entire
training dataset but instead of gϕ we learn networks that estimate accuracy of an input xij on a counter-
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Figure 13: This figure shows renderings of a chair object under different βs. Each β is a 3-tuple
namely (view, zoom-level, light color).

factual setting β using ideas from the domain-invariant representations and Individual Treatment
Effect estimation literature. (1) Domain Adversarial Neural Network based training. This
method [6] aims to learn domain invariant representations using GANs based minmax objective. We
extract representations of input (x) by fine tuning a Resnet18 model with pre trained Imagenet weights.
Then from the representation layer, we spawn a domain classifier that predicts the environment β that
generated the instance x. We multiply x representation with a domain reversal layer before feeding
it to the domain classifier. The representations are concatenated with environment embedding and
then fed to one more Fully connected Network that is spawned out of the representation layer. This
network aims to predict classifier’s confidence (fθ(y|x)) on the examples. (2) TARNET. We extract
representations of input (x) by fine tuning a Resnet18 model with pre-trained Imagenet weights.
From the representation layer, we spawn |B| fully connected layers for each β ∈ B. Each layer is
thus responsible to predict classifier’s confidence (fθ(y|x)) on only those instances that belong to the
same environment β.
For Triage, since these methods directly model the counterfactual accuracy P (y|x,β)∀β, we use
these predicted values in place of our prior fCF term in Eq (9). The results for these baselines in
shown in the Figure 14. Our proposal beats all the baselines thus establishing the supremacy of out
three-stage proposal for training RECOURSENET.

G Illustration of original and recoursed skin images

In this experiment, we visualize the original and recoursed images for the first five images in the
Skin-Lesion test dataset that require recouse as per our triage policy. The visualizations are shown in
the Figure 15. The images on the left are the test images before recourse and those on the right are
the corresponding images that are obtained after recourse.
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(a) Shapenet-Large (b) Shapenet-Small

(c) Speech-Commands (d) Skin-Lesion

Figure 14: This figure shows the performance of Recourse Recommender on all 4 datasets with newly
added random baselines namely Invariant Risk Minimization, TARNET and Domain Adversarial
Neural Network. The curves depict the mean Recourse accuracy ± one standard deviation over the
mean for results obtained over five seeds.
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Figure 15: This figure shows the test images of the Skin-Lesion dataset before (left) and after recourse
(right).

21


	Introduction
	Related work
	Proposed approach
	Training RecourseNet
	Theoretical Analysis

	Experiments
	Stability of our proposals in solving the overall objective 1
	Predicted Environments by g
	Conclusions
	Acknowledgements
	Errata
	Proofs of technical results
	Proof of Proposition 1
	Proof of Proposition 2
	Analysis of our greedy algorithm

	Additional details about experimental setup
	Results on Synthetic Dataset
	Models and Hyper-parameters
	Additional Baselines
	Illustration of original and recoursed skin images

