Learning Recourse on Instance Environment to Enhance Prediction Accuracy

Lokesh N

Sai Koushik

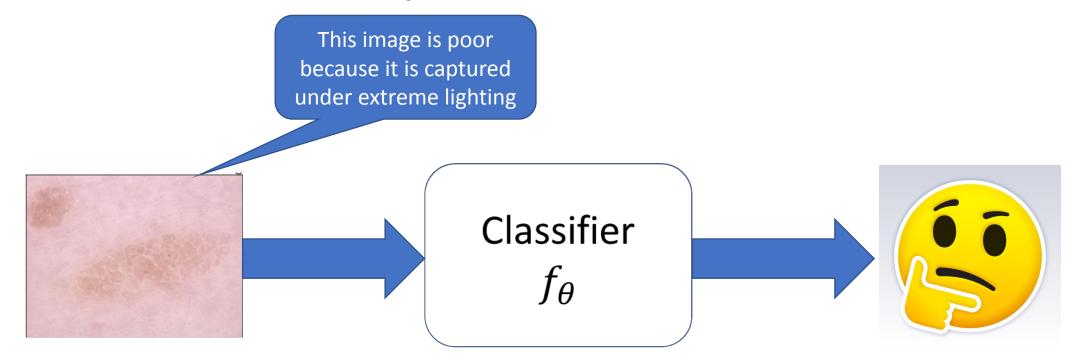
Abir De

Sunita Sarawagi

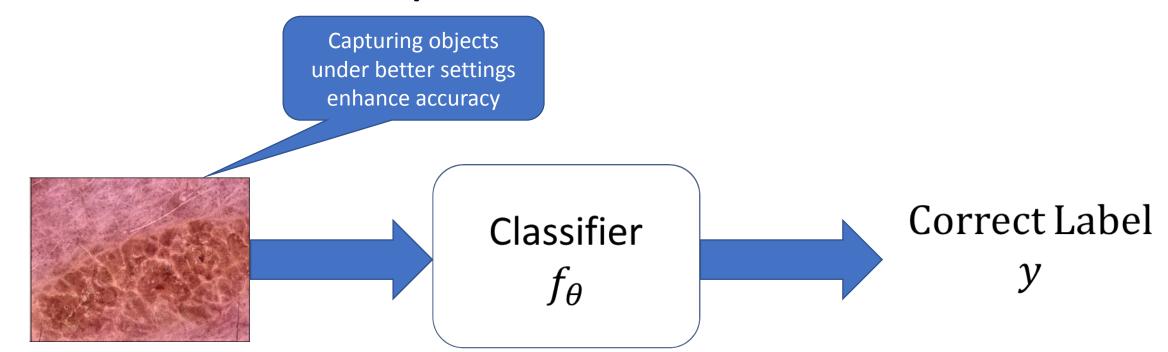
Problem Statement

- ML models make incorrect predictions on input instances obtained from poor environments.
- Should we settle with incorrect predictions?
- No, we design a recourse module that seeks instances under alternative settings.
 - The instances generated under these settings are hopefully amenable to correct predictions.

Skin-Lesion Example



Skin-Lesion Example



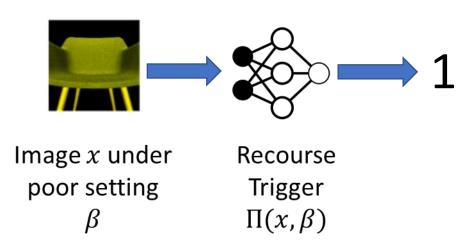
A 3D object recognition task

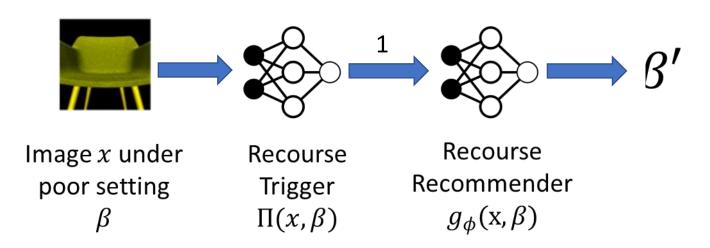
- We consider the shapenet Dataset that consists of 3D models of many kinds of objects
- These objects can be rendered into 2D images under various settings.
- The settings used to render the object affects the classifier performance.

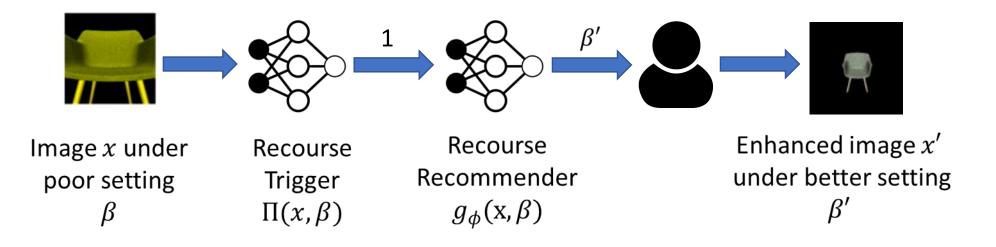
A Chair object under 9 settings

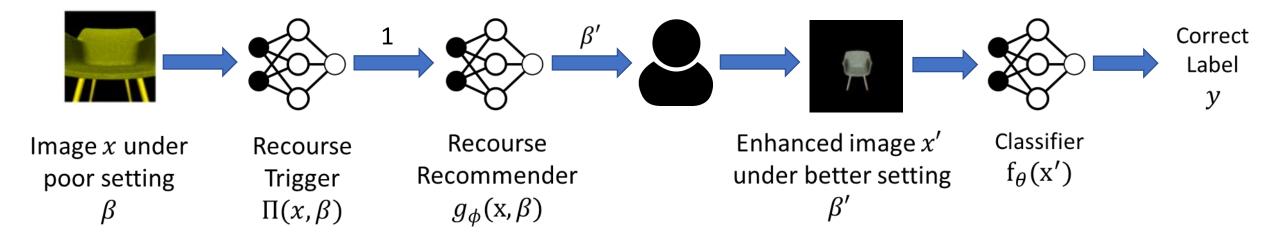
Training Dataset

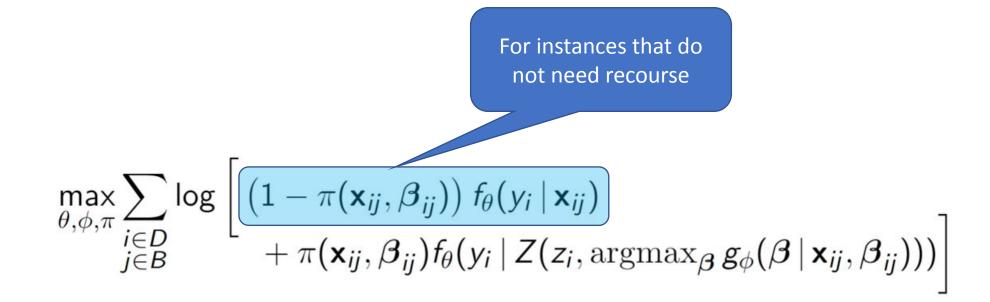
$$D = \left\{ \left\{ x_{ij}, \beta_{ij} \right\}_{j=1}^{B_i}, y_i \right\}_{i=1}^{N}$$

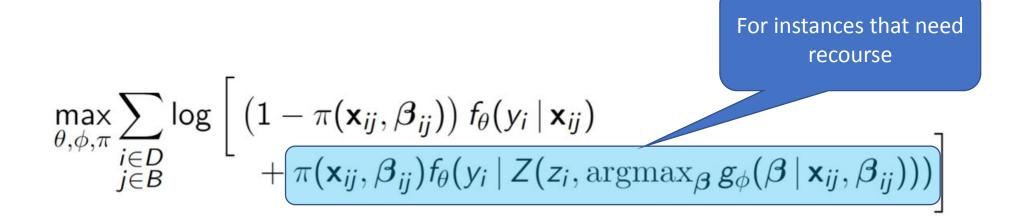












 $\max_{\theta,\phi,\pi} \sum_{\substack{i \in D \\ j \in B}} \log \left[\left(1 - \pi(\mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}) \right) f_{\theta}(y_i \, | \, \mathbf{x}_{ij}) \right. \\ \left. + \pi(\mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}) f_{\theta}(y_i \, | \, \boldsymbol{Z}(z_i, \operatorname{argmax}_{\boldsymbol{\beta}} g_{\phi}(\boldsymbol{\beta} \, | \, \mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}))) \right]$

$$\max_{\theta,\phi,\pi} \sum_{\substack{i \in D \\ j \in B}} \log \left[\left(1 - \pi(\mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}) \right) f_{\theta}(y_i \, | \, \mathbf{x}_{ij}) + \pi(\mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}) f_{\theta}(y_i \, | \, Z(z_i, \operatorname{argmax}_{\boldsymbol{\beta}} g_{\phi}(\boldsymbol{\beta} \, | \, \mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}))) \right]$$

subject to,
$$\sum_{i \in D, j \in B} \pi(\mathbf{x}_{ij}) \leq b$$
, $\pi(\mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}) \in \{0, 1\}$

- Training the classifier on entire training data may be suboptimal especially when some poor instances will be recoursed at test time.
- Thus, we should focus training f_{θ} on instances after recourse.

```
We use an iterative
Algorithm 1: Greedy
                                            greedy algorithm to
for training f_{\theta}
                                          identify instances likely
                                               to be recoursed
Require: Data T = \{y_i, \{
 1: V = \bigcup_{i \in D} \{\{i\} \times B_i\}
 2: R \leftarrow \emptyset, \theta^0(\emptyset) \leftarrow \text{TRAIN}(F(\bullet,\emptyset))
 3: for k \in [b] do
 4: for (i, j) \in V \setminus R do
           \mathcal{L}[(i,j)] =
              F(\theta^k(R \cup \{(i,j)\}), R \cup \{(i,j)\})
 6: (i^*, j^*) \leftarrow \operatorname{argmax}_{(i,j) \in V \setminus R} \mathcal{L}[(i,j)]
 7: R \leftarrow R \cup \{(i^*, j^*)\}
         \theta^{k+1}(R) \leftarrow \text{TRAIN}(F(\bullet, R))
 9: Return \theta^{k+1}(R)
```

- Training the classifier on entire training data may be suboptimal especially when some poor instances will be recoursed at test time.
- Thus, we should focus training f_{θ} on instances after recourse.

Algorithm 1: Greedy for training f_{θ}

We first estimate the improvement in accuracy if an instance is recoursed

```
Require: Data T = \{y_i, \{
1: V = \cup_{i \in D} \{\{i\} \times B_i\}
2: R \leftarrow \emptyset, \theta^0(\emptyset) \leftarrow \text{TR}
3: \text{ for } k \in [b] \text{ do}
4: \text{ for } (i,j) \in V \setminus R \text{ do}
5: \mathcal{L}[(i,j)] = F(\theta^k(R \cup \{(i,j)\}), R \cup \{(i,j)\})
6: (i^*,j^*) \leftarrow \operatorname{argmax}_{(i,j) \in V \setminus R} \mathcal{L}[(i,j)]
7: R \leftarrow R \cup \{(i^*,j^*)\}
8: \theta^{k+1}(R) \leftarrow \text{TRAIN}(F(\bullet,R))
9: \text{Return } \theta^{k+1}(R)
```

- Training the classifier on entire training data may be suboptimal especially when some poor instances will be recoursed at test time.
- Thus, we should focus training f_{θ} on instances after recourse.

```
Algorithm 1: GreedyAlgorithm
for training f_{\theta}
                                    We drop the instance that is
Require: Data T =
 1: V = \bigcup_{i \in D} \{\{i\}\}
                                               (a)
                                                    Poor
 2: R \leftarrow \emptyset, \theta^0(\emptyset) \leftarrow
                                          Amenable to recourse
 3: for k \in [b] do
         for (i, j) \in V
                           \{(i,j)\}, R \cup \{(i,j)\}\}
          (i^*, j^*) \leftarrow \operatorname{argmax}_{(i,j) \in V \setminus R} \mathcal{L}[(i,j)]
                 (R) \leftarrow \text{TRAIN}(F(\bullet, R))
 9: Return \theta^{k+1}(R)
```

- Training the classifier on entire training data may be suboptimal especially when some poor instances will be recoursed at test time.
- Thus, we should focus training f_{θ} on instances after recourse.

Algorithm 1: GreedyAlgorithm for training f_{θ}

```
Require: Data T = \{y_i, \{\mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}\}_{j \in B_i}\}, b
 1: V = \bigcup_{i \in D} \{\{i\}\}
 2: R \leftarrow \emptyset, \theta^0(\emptyset) \leftarrow
                                       We train the classifier by
                                       iteratively dropping such
 3: for k \in [b] do
                                                  instances
          for (i, j) \in V
                              TRAIN(F(\bullet,R))
 9: Return \theta^k
```

Recourse Recommender Training (g_{ϕ})

- Given an instance (x, β) , g_{ϕ} outputs alternate setting β' to render objects.
- But we do not have supervision for such good settings.
- Thus, we can make a_{ϕ} emit settings that produce better classifier accuracy.

 It is enough if g_{ϕ} predicts

good settings for instances that need recourse

$$\underset{\phi}{\operatorname{argmax}} \sum_{\substack{i \in D, j \in B_i \\ \pi(\mathbf{x}_{ij}) = 1}} \max_{\boldsymbol{\beta}} \log \left[f_{\theta}(y_i \,|\, Z(z_i, \boldsymbol{\beta})) \, g_{\phi}(\boldsymbol{\beta} \,|\, \mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}) \right]$$

Recourse Recommender Training (g_{ϕ})

- Given an instance (x, β) , g_{ϕ} outputs alternate setting β' to render objects.
- But we do not have supervision for such good settings.
- Thus, we can make g_{ϕ} emit settings that accuracy.

But Z is unavailable $g_{\phi}(oldsymbol{eta} \, | \, \mathbf{x}_{ij}, oldsymbol{eta}_{ij})]$

$$\underset{\phi}{\operatorname{argmax}} \sum_{\substack{i \in D, j \in B_i \\ \pi(\mathbf{x}_{ij}) = 1}} \max_{\boldsymbol{\beta}} \log \left[f_{\theta}(y_i | \mathbf{Z}(z_i, \boldsymbol{\beta})) g_{\phi}(\boldsymbol{\beta} | \mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}) \right]$$

Recourse Recommender objective

We borrow β' labels from within the training data from instances that have better accuracy

$$\max_{\phi} \sum_{\substack{i \in D_{\delta} \\ i \in B_{i}}} \max_{r \in B_{i}} \log \left[f_{\theta}(y_{i} \mid \mathbf{x}_{ir}) g_{\phi}(\boldsymbol{\beta}_{ir} \mid \mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}) \right]$$

Recourse Recommender objective

For groups that have atleast one good instance, we borrow β' from them

For groups that have all bad instances we set β' that corresponds to the best estimated counterfactual accuracy

$$\max_{\phi} \sum_{\substack{i \in D_{\delta} \\ j \in B_{i}}} \max_{r \in B_{i}} \log \left[f_{\theta}(y_{i} \mid \mathbf{x}_{ir}) g_{\phi}(\boldsymbol{\beta}_{ir} \mid \mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}) \right] + \sum_{\substack{i \notin D_{\delta} \\ j \in B_{i}}} \log g_{\phi} \left(\operatorname{argmax}_{\boldsymbol{\beta}} f^{\text{CF}}(y_{i} \mid \mathbf{x}_{ij}, \boldsymbol{\beta}) \mid \mathbf{x}_{ij}, \boldsymbol{\beta}_{ij} \right)$$

Recourse Recommender objective

Counterfactual accuracy estimated for x_{ij} under alternate setting β

$$\max_{\phi} \sum_{\substack{i \in D_{\delta} \\ j \in B_{i}}} \max_{r \in B_{i}} \log \left[f_{\theta}(y_{i} \mid \mathbf{x}_{ir}) g_{\phi}(\boldsymbol{\beta}_{ir} \mid \mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}) \right] + \sum_{\substack{i \not\in D_{\delta} \\ j \in B_{i}}} \log g_{\phi} \left(\operatorname{argmax}_{\boldsymbol{\beta}} \left[f^{\text{CF}}(y_{i} \mid \mathbf{x}_{ij}, \boldsymbol{\beta}) \right] \mid \mathbf{x}_{ij}, \boldsymbol{\beta}_{ij} \right)$$

$$f^{\mathrm{CF}}(y \mid \mathbf{x}, \boldsymbol{\beta}) = \frac{\sum\limits_{(i,j) \in V} \mathbb{I}[y_i = y, \boldsymbol{\beta}_{ij} = \boldsymbol{\beta}] f_{\hat{\theta}}(y_i = y \mid \mathbf{x}_{ij})}{\sum\limits_{(i,j) \in V} \mathbb{I}[y_i = y, \boldsymbol{\beta}_{ij} = \boldsymbol{\beta}]}$$

Recourse Trigger (π)

- Recourse Trigger module does not contain any parameters.
- During inference we trigger reco accuracy under the recourse set the original instance.

Since we do not have ground truth labels during inference, we use $y_{max} = argmax_y f_{\theta}(y|x_{ij})$

actual acy than

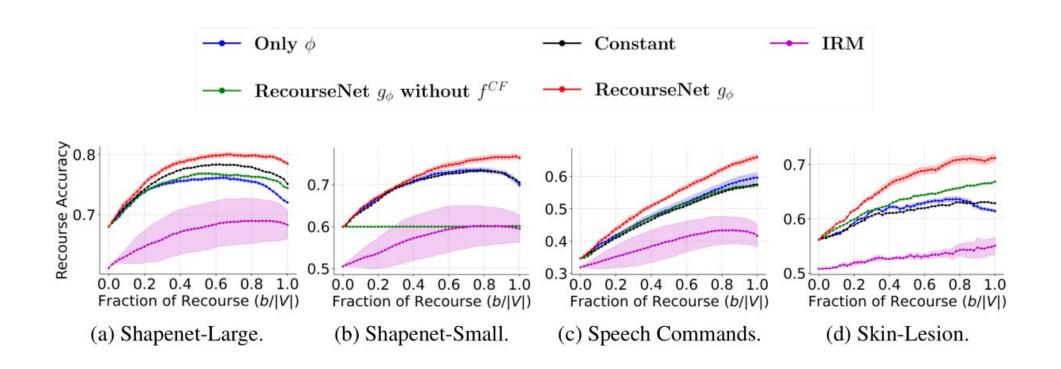
$$\pi(\mathbf{x}_{ij}, \boldsymbol{\beta}_{ij}) = \mathbb{I}[f^{\text{CF}}(\mathbf{y_{\text{max}}} | \mathbf{x}_{ij}, \boldsymbol{\beta}'_{ij}) > f_{\widehat{\theta}}(y_{\text{max}} | \mathbf{x}_{ij})]$$

$$\beta'_{ij} = \operatorname{argmax}_{\beta} g_{\hat{\phi}}(\beta | \mathbf{x}_{ij}, \beta_{ij}))$$

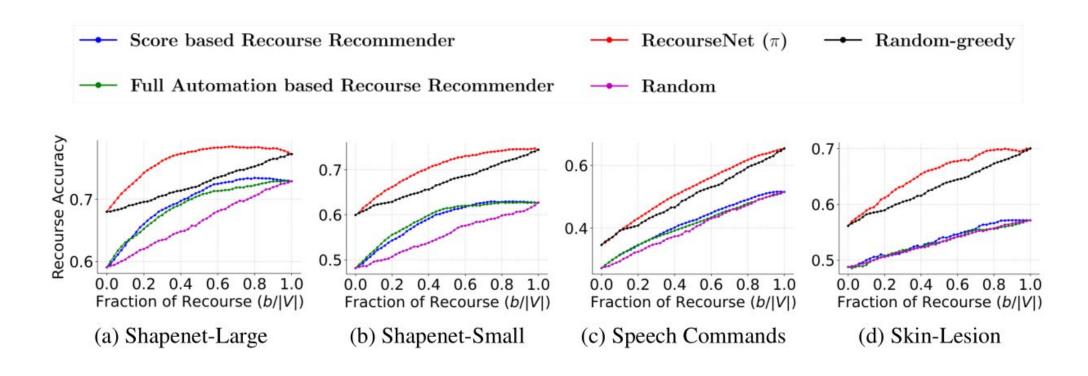
Classifier Performance

Training Data	Shapenet-Large	Shapenet-Small	Speech-Commands	Skin-Lesion
Full-data (Baseline)	71.93 ± 0.63	62.97 ± 0.80	51.85 ± 1.08	56.42 ± 0.80
One-shot subsetting	72.63 ± 0.54	65.55 ± 1.11	54.66 ± 1.2	60.89 ± 1.11
Iterative greedy (Ours)	77.14 ± 0.63	74.13 ± 1.10	65.76 ± 1.44	68.62 ± 0.90

Recourse Recommender Performance



Recourse Trigger Performance



Thank You!

