

Introduction

Treatment T applied to individual with covariates X leads to outcome Y(T)

- Goal: estimate Individual Treatment Effect (ITE) $\tau(x, t, t') = \mathbb{E}[Y(t) Y(t') \mid x]$
- Challenge: outcome is observed only under one treatment T. We can not directly regress τ against (X, T, T').

Factual Loss: regress Y against (X, T) to estimate $\mu(x, t) = \mathbb{E}[Y(t) \mid x]$, infer ITE $\hat{\tau}(x, t, t') = \hat{\mu}(x, t) - \hat{\mu}(x, t')$. Only utilises factual outcomes; naive strategy.

- **Confounding:** covariates *X* are correlated with treatment T in training data. $\hat{\mu}(x, t)$ incurs higher estimation error where $Pr(t \mid x)$ is low. Pairing each (x, t, y) with (x, t', y') is impossible.
- **Prior works** address this fundamental problem in two broad ways:
- စ္ရှင္ Meta-Learners: two-stage learning, estimate nuisance parameters
- $\mathbf{P} \stackrel{\text{\tiny def}}{\geq} \mathbf{\bullet}$ Matching: pair (x, t, y) with "nearby" (x', t', y'); assume $\mu(x, t') \approx y'$
 - Generative Models: model counterfactual distribution Limitations: faulty pseudo-outcome supervision
 - Regularisation: balance $\phi(x)$ distributions across treatments
- Reweighting: inverse weighting with estimated propensity Pr(t | x)Limitations: lack inductive bias for τ : poor propensity estimated
 - Limitations: lack inductive bias for τ ; poor propensity estimates

Motivating Our Approach: PairNet

PairNet avoids pseudo-outcomes by modifying the matching objective. For binary treatments, $\tau(x) = \mathbb{E}[Y(1) - Y(0) \mid x] = \mu_1(x) - \mu_0(x)$ **ITE risk** = $\Sigma_i(\tau(x_i) - \hat{\tau}(x_i))^2 = \Sigma_i(\mu_1(x_i) - \mu_0(x_i) - \hat{\mu}_1(x_i) + \hat{\mu}_0(x_i))^2$

We can't simultaneously access $\mu_1(x)$ and $\mu_0(x)$ in training data. Pair sample (x, t, y)with nearby sample (x', 1 - t, y')Matching : $\Sigma_{i}(y - y' - \hat{\mu}(x, t) + \hat{\mu}(x, 1 - t))^{2}$ PairNet : $\Sigma_{i}(y - y' - \hat{\mu}(x, t) + \hat{\mu}(x', 1 - t))^{2}$

PairNet avoids pseudo-outcome $\hat{\mu}(x, 1-t)$

Pair Loss can be decomposed into factual loss and residual alignment terms:

> $\sum_{i} (y - \hat{\mu}(x, t))^{2} + (y' - \hat{\mu}(x', 1 - t))^{2}$ $-2(y - \hat{\mu}(x, t))(y' - \hat{\mu}(x', 1 - t))$

The last term promotes a positive correlation among error residuals for near covariates which Ξ is a necessary inductive bias for ITE estimation.

PairNet: Training with Observed Pairs to Estimate Individual Treatment Effect

Lokesh Nagalapatti, Pranava Singhal, Avishek Ghosh, Sunita Sarawagi; Indian Institute of Technology Bombay

PairNet Algorithm

FLoss/PairLoss →

- I. Given training data point (x, t, y)
- 2. Sample alternative treatment t'
- 3. Sample neighbouring data point (x', t')s.t. $d(\mathbf{x}, \mathbf{x'}) = ||\psi(\mathbf{x}) - \psi(\mathbf{x'})||$ is small
- 4. Optimise (ϕ, μ) to minimise Pair Loss

The probability of the j^{th} sample with treatment t', being paired with i^{th} sample with treatment t is proportional to the softmax of the negative distance between them, promoting nearby pairing. This induces a distribution over neighbours: $q_{t}(x' \mid x, t') \propto e^{-d(x, x')} p_{t'}(x')$

Theoretical Analysis: Bounds on ITE Risk for Binary Treatment

Define the error residue $r_{f}(x) = \hat{\mu}(x, t) - \mu(x, t)$ ITE risk $\varepsilon_{\text{ITF}} = \int_{x} (r_1(x) - r_0(x))^2 p(x) dx$ $= \sum_{t} u_{t} \left[\int_{x} r_{t}(x)^{2} p_{t}(x) dx + \int_{x} r_{1-t}(x)^{2} p_{t}(x) dx - 2 \right]$ Pair Loss $\varepsilon_{\text{pair}} = \sum_{t} u_t \int_{x} \int_{x'} (r_t(x) - r_{1-t}(x'))^2 p$ $= \sum_{t} u_{t} \left[\int_{x} r_{t}(x)^{2} p_{t}(x) dx + \int_{x} r_{1-t}(x')^{2} q_{t}(x') dx' - 2 \right]$

Integral Probability Metric $IPM_{C}(p, q) = su$

We show that $\varepsilon_{\text{ITE}} \leq \varepsilon_{\text{pair}} + \Sigma_t u_t [B \cdot IPM_G(p_t, q_t) + 2K_{1-t} \delta \sqrt{\varepsilon_F}]$

assuming expected neighbour distance $\leq \delta$, r_{f} is K_{f} -Lipschitz and $r_{f}^{2}/B \in G$. The bound converges to zero for large data showing the consistency of PairNet. — p₁(**x**) This bound is tighter than the bound — q₀(**x**) of Shalit et al. for Factual loss: — q₁(**x**) $\varepsilon_{\text{ITF}} \leq 2(\varepsilon_{\text{F}}^{0} + \varepsilon_{\text{F}}^{1} + B \cdot IPM_{G}(p_{0}, p_{1}))^{0.1}$ covariates $X \rightarrow$

Experiments

- Performance Metric: PEHE error (square root of empirical ITE risk); we also report p-values for a one-sided **paired t-test** comparing PairNet to baselines
- Datasets: IHDP, ACIC, and Twins (Binary); TCGA[0-2], IHDP, News (Continuous)

- PairNet constructs pairs using ψ , the representation ϕ trained on factual loss.
- Hyperparameters: δ_{pair} (fraction far pairs dropped) and num_z (# pairs/sample)

$$\phi(x) \qquad \mu_{1} \qquad \hat{\mu}(x, 1) \\ (x, 1, y) \qquad \phi \qquad (x', 0, y') \qquad \phi \qquad \mu_{0} \qquad \mu_{0} \qquad \hat{\mu}(x', 0)$$

Loss = $[(y - y') - (\mu_1(\phi(x)) - \mu_0(\phi(x')))]^2$

 $q_t(\mathbf{x'}) = \int q_t(\mathbf{x'} \mid \mathbf{x}, \mathbf{t'}) p_t(\mathbf{x}) d\mathbf{x}$

, *t*);
$$u_t = \Pr(t)$$
; $p_t(x) = \Pr(x | t)$

$$\int_{x} r_{t}(x) r_{1-t}(x) p_{t}(x) dx]$$

$$p_{t}(x) q_{t}(x' \mid x) dx' dx$$

$$2 \int_{x} \int_{x'} r_{t}(x) r_{1-t}(x') p_{t}(x) q_{t}(x' \mid x) dx' dx]$$

$$Jp_{g \in G} |\int g(x)(p(x) - q(x))dx|$$

• PairNet is model agnostic; can use any T-Learner architecture. We use TARNet • For continuous treatments we consider both **DRNet** and **VCNet** architectures • Implemented in **JAX** within the **CATENets library** with default hyperparameters

		Estimator	IHDP	ACIC	Twins
Repr	Meta Learners	TLearner	1.34 (0.00)	4.29 (0.03)	0.32 (0.01)
		RLearner	3.24 (0.00)	3.94 (0.00)	0.32 (0.15)
		DRLearner	1.35 (0.00)	3.33 (0.08)	0.32 (0.14)
		XLearner	1.91 (0.00)	3.31 (0.10)	0.32 (0.01)
	resentation Learners	TARNet	0.83 (0.11)	2.71 (0.29)	0.32 (0.00)
		CFRNet	1.11 (0.00)	3.45 (0.06)	0.33 (0.00)
		FlexTENet	1.26 (0.00)	5.37 (0.00)	0.36 (0.00)
	Weighting	IPW	0.93 (0.04)	2.57 (0.41)	0.33 (0.00)
		DragonNet	0.83 (0.11)	2.72 (0.28)	0.33 (0.00)
		PairNet	0.69 (0.00)	2.46 (0.00)	0.32 (0.00)

- To create pairs for continuous treatm sample treatment
- Then we sample (such that $|t^0 - t'| <$
- PairNet outperform significantly when size is reduced

Scan QR code to access full paper, code and author homepages

 PairNet outperforms state-of-the-art ITE estimators across binary and continuous treatment benchmarks with high statistical significance

> PairNet outperforms matching (kNN) and Factual across different levels of proximity between covariates in a pair • PairNet is less sensitive to variation in proximity, outperforming factual loss even for random pairs

or -		IHDP	News	TCGA-0
ments first				drop 90% data
$t t^0 \sim U(0, 1)$	DRNet	2.45 (0.00)	1.42 (0.00)	0.52 (0.00)
(<i>x</i> ', <i>t</i> ', <i>y</i> ') 0.05	PairNet	2.27(0.00)	1.32(0.00)	0.44 (0.00)
rms VCNet	VCNet	1.73 (0.02)	1.24(1.00)	0.43 (0.02)
n dataset	PairNet	1.57(0.00)	1.26 (0.00)	0.27 (0.00)

• PairNet is not very sensitive to hyperparameters δ_{pair} and num₂, When applying Pair Loss to other representation learning T-Learners (CFRNet, DragonNet, FlexTENet) we observe similar performance gains • We do not observe any statistically significant variation in performance on changing the weight of the residue alignment term $(y - \hat{\mu}(x, t))(y' - \hat{\mu}(x', 1 - t))$

