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Motivating Our Approach: PairNet

PairNet avoids pseudo-outcomes by modifying the matching objective.
For binary treatments, 𝜏(𝑥) = 𝔼[𝑌(1) - 𝑌(0)｜𝑥] = 𝜇₁(𝑥) - 𝜇₀(𝑥)
ITE risk =  𝛴𝑖(𝜏(𝑥𝑖) - 𝜏(̂𝑥𝑖))² = 𝛴𝑖(𝜇₁(𝑥𝑖) - 𝜇₀(𝑥𝑖) - 𝜇₁̂(𝑥𝑖) + 𝜇₀̂(𝑥𝑖))²

PairNet Algorithm ● PairNet outperforms state-of-the-art ITE estimators across binary and 
continuous treatment benchmarks with high statistical significance
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Introduction

Treatment 𝑇 applied to individual with covariates 𝑋 leads to outcome 𝑌(𝑇)
● Goal: estimate Individual Treatment Effect (ITE) 𝜏(𝑥, 𝑡, 𝑡’) = 𝔼[𝑌(𝑡) - 𝑌(𝑡’)｜𝑥]
● Challenge: outcome is observed only under one treatment 𝑇. We can not 

directly regress 𝜏 against (𝑋, 𝑇, 𝑇’).

Factual Loss: regress 𝑌 against (𝑋, 𝑇) to estimate 𝜇(𝑥, 𝑡) = 𝔼[𝑌(𝑡)｜𝑥], infer ITE 
𝜏(̂𝑥, 𝑡, 𝑡’) = 𝜇(̂𝑥, 𝑡) - 𝜇(̂𝑥, 𝑡’). Only utilises factual outcomes; naive strategy.

● Confounding: covariates 𝑋 are correlated with 
treatment 𝑇 in training data. 𝜇(̂𝑥, 𝑡) incurs higher 
estimation error where Pr(𝑡 | 𝑥) is low. Pairing 
each (𝑥, 𝑡, 𝑦) with (𝑥, 𝑡’, 𝑦’) is impossible.

 𝑇

 𝑋

 𝑌

● Prior works address this fundamental problem in two broad ways:
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W
ith ● Meta-Learners: two-stage learning, estimate nuisance parameters

● Matching: pair (𝑥, 𝑡, 𝑦) with “nearby” (𝑥’, 𝑡’, 𝑦’); assume 𝜇(𝑥, 𝑡’) ≈ 𝑦’ 
● Generative Models: model counterfactual distribution

Limitations: faulty pseudo-outcome supervision 

● Regularisation: balance 𝜙(𝑥) distributions across treatments
● Reweighting: inverse weighting with estimated propensity Pr(𝑡 | 𝑥)

Limitations: lack inductive bias for 𝜏; poor propensity estimates

We can’t simultaneously access 𝜇₁(𝑥) and 
𝜇₀(𝑥) in training data. Pair sample (𝑥, 𝑡, 𝑦) 
with nearby sample (𝑥’, 1 - 𝑡, 𝑦’)
Matching : 𝛴𝑖(𝑦 - 𝑦’ - 𝜇(̂𝑥, 𝑡) + 𝜇(̂𝑥, 1- 𝑡))²
PairNet : 𝛴𝑖(𝑦 - 𝑦’ - 𝜇(̂𝑥, 𝑡) + 𝜇(̂𝑥’, 1- 𝑡))² 

PairNet avoids pseudo-outcome 𝜇(̂𝑥, 1- 𝑡)

(𝑥’, 𝑡’ = 1, 𝑦’)

(𝑥, 𝑡 = 0, 𝑦)
𝜇₁(𝑥)

𝜇₀(𝑥)

Pr(𝑥 | 𝑡 = 1)Pr(𝑥 | 𝑡 = 0)

Pair Loss can be decomposed into factual loss 
and residual alignment terms:

𝛴𝑖(𝑦 - 𝜇(̂𝑥, 𝑡))² + (𝑦’ - 𝜇(̂𝑥’, 1- 𝑡))² 
- 2 (𝑦 - 𝜇(̂𝑥, 𝑡))(𝑦’ - 𝜇(̂𝑥’, 1- 𝑡))

The last term promotes a positive correlation 
among error residuals for near covariates which 
is a necessary inductive bias for ITE estimation.

The probability of the 𝑗th sample with treatment 𝑡’, being paired with 𝑖th sample 
with treatment 𝑡 is proportional to the softmax of the negative distance between 
them, promoting nearby pairing. This induces a distribution over neighbours:

𝑞𝑡(𝑥’ | 𝑥, 𝑡’) ∝ 𝑒-𝑑(𝑥 , 𝑥’)𝑝𝑡’(𝑥’) 𝑞𝑡(𝑥’) = ∫𝑞𝑡(𝑥’ | 𝑥, 𝑡’)𝑝𝑡(𝑥)𝑑𝑥  

Theoretical Analysis: Bounds on ITE Risk for Binary Treatment

Define the error residue 𝑟𝑡(𝑥) = 𝜇(̂𝑥, 𝑡) - 𝜇(𝑥, 𝑡); 𝑢𝑡 = Pr(𝑡); 𝑝𝑡(𝑥) = Pr(𝑥 | 𝑡)
ITE risk εITE = ∫𝑥 (𝑟₁(𝑥) - 𝑟₀(𝑥))

2 𝑝(𝑥)𝑑𝑥 
= 𝛴𝑡 𝑢𝑡[ ∫𝑥𝑟𝑡(𝑥)

2𝑝𝑡(𝑥)𝑑𝑥 + ∫𝑥𝑟1-𝑡(𝑥)
2𝑝𝑡(𝑥)𝑑𝑥 

 - 2 ∫𝑥𝑟𝑡(𝑥)𝑟1-𝑡(𝑥)
 𝑝𝑡(𝑥)𝑑𝑥] 

Pair Loss εpair = 𝛴𝑡 𝑢𝑡   ∫𝑥 ∫𝑥’ (𝑟𝑡(𝑥) - 𝑟1-𝑡(𝑥’))
2 𝑝𝑡(𝑥) 𝑞𝑡(𝑥’ | 𝑥)𝑑𝑥’𝑑𝑥 

= 𝛴𝑡 𝑢𝑡[ ∫𝑥𝑟𝑡(𝑥)
2𝑝𝑡(𝑥)𝑑𝑥 + ∫𝑥’𝑟1-𝑡(𝑥’)

2𝑞𝑡(𝑥’)𝑑𝑥’ - 2 ∫𝑥 ∫𝑥’𝑟𝑡(𝑥)𝑟1-𝑡(𝑥’)
 𝑝𝑡(𝑥) 𝑞𝑡(𝑥’ | 𝑥)𝑑𝑥’𝑑𝑥] 

Integral Probability Metric 𝐼𝑃𝑀𝐺(𝑝 , 𝑞) = 𝗌𝗎𝗉𝑔∈𝐺￨∫𝑔(𝑥)(𝑝(𝑥) - 𝑞(𝑥))𝑑𝑥￨

We show that εITE ≤ εpair  + 𝛴𝑡 𝑢𝑡  [ 𝐵·𝐼𝑃𝑀𝐺(𝑝𝑡 , 𝑞𝑡) + 2 𝐾1-𝑡 𝛿√εF ] 
assuming expected neighbour distance ≤ 𝛿 , 𝑟𝑡 is 𝐾𝑡-Lipschitz and 𝑟𝑡 /𝐵 ∈ 𝐺. 
The bound converges to zero for large data showing the consistency of PairNet. 

1. Given training data point (𝑥, 𝑡, 𝑦)
2. Sample alternative treatment 𝑡’
3. Sample neighbouring data point (𝑥’, 𝑡’, 𝑦’) 

s.t. 𝑑(𝑥 , 𝑥’) = ||𝜓(𝑥) − 𝜓(𝑥’)|| is small
4. Optimise (𝜙, 𝜇) to minimise Pair Loss

(𝑥, 1, 𝑦)

(𝑥’, 0, 𝑦’)
𝜙

𝜙(𝑥)

𝜙(𝑥’)

𝜇₁

𝜇₀

𝜇(̂𝑥, 1)

𝜇(̂𝑥’, 0)

Loss = [(𝑦 - 𝑦’) - (𝜇₁(𝜙(𝑥)) - 𝜇₀(𝜙(𝑥’)))]2

𝑡

2

This bound is tighter than the bound 
of Shalit et al. for Factual loss:
εITE ≤ 2(εF + εF + 𝐵·𝐼𝑃𝑀𝐺(𝑝0 , 𝑝1)) 
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Experiments

● Performance Metric: PEHE error (square root of empirical ITE risk); we also 
report p-values for a one-sided paired t-test comparing PairNet to baselines

● Datasets: IHDP, ACIC, and Twins (Binary); TCGA[0-2], IHDP, News (Continuous)
● PairNet is model agnostic; can use any T-Learner architecture. We use TARNet
● For continuous treatments we consider both DRNet and VCNet architectures
● Implemented in JAX within the CATENets library with default hyperparameters
● PairNet constructs pairs using 𝜓, the representation 𝜙 trained on factual loss.
● Hyperparameters: 𝛿pair (fraction far pairs dropped) and numz’ (# pairs/sample)

covariates 𝑋 →

● PairNet outperforms matching (kNN) 
and Factual across different levels of 
proximity between covariates in a pair

● PairNet is less sensitive to variation in 
proximity, outperforming factual loss 
even for random pairs

 

Estimator IHDP ACIC Twins
TLearner 1.34 (0.00) 4.29 (0.03) 0.32 (0.01)
RLearner 3.24 (0.00) 3.94 (0.00) 0.32 (0.15)
DRLearner 1.35 (0.00) 3.33 (0.08) 0.32 (0.14)
XLearner 1.91 (0.00) 3.31 (0.10) 0.32 (0.01)
TARNet 0.83 (0.11) 2.71 (0.29) 0.32 (0.00)
CFRNet 1.11 (0.00) 3.45 (0.06) 0.33 (0.00)
FlexTENet 1.26 (0.00) 5.37 (0.00) 0.36 (0.00)
IPW 0.93 (0.04) 2.57 (0.41) 0.33 (0.00)
DragonNet 0.83 (0.11) 2.72 (0.28) 0.33 (0.00)
PairNet 0.69 (0.00) 2.46 (0.00) 0.32 (0.00)

Meta 
Learners

Representation 
Learners

Weighting

IHDP News TCGA-0
drop 90% data

DRNet 2.45 (0.00) 1.42 (0.00) 0.52 (0.00)
PairNet 2.27(0.00) 1.32(0.00) 0.44 (0.00)
VCNet 1.73 (0.02) 1.24(1.00) 0.43 (0.02)
PairNet 1.57(0.00) 1.26 (0.00) 0.27 (0.00)

● To create pairs for 
continuous treatments first 
sample treatment 𝑡0 ~ 𝑈(𝟢, 𝟣)

● Then we sample (𝑥’, 𝑡’, 𝑦’) 
such that |𝑡0 - 𝑡’| < 0.05

● PairNet outperforms VCNet 
significantly when dataset 
size is reduced

● PairNet is not very sensitive to hyperparameters 𝛿pair and numz’
● When applying Pair Loss to other representation learning T-Learners 

(CFRNet, DragonNet, FlexTENet) we observe similar performance gains
● We do not observe any statistically significant variation in performance on 

changing the weight of the residue alignment term (𝑦 - 𝜇(̂𝑥, 𝑡))(𝑦’ - 𝜇(̂𝑥’, 1- 𝑡))


