PairNet: Training with Observed Pairs to Estimate Individual Treatment Effect

PairNet avoids pseudo-outcomes by modifying the matching objective. For binary treatments, $\tau(x) = \mathbb{E}[Y(1) - Y(0) | x] = \mu_1(x) - \mu_0(x)$ **ITE risk** = $\sum_i (r(x_i))$ i^{\prime}) - $\hat{\tau}(x)$ (*i*))² = $\sum_{i} (\mu_1(x_i))$ i^{\prime} $\int -\mu_0(x)$ i^{\prime} $\int -\hat{\mu}_1(x)$ i' $+ \hat{\mu}$ o (x) i' $))^{2}$

Lokesh Nagalapatti, Pranava Singhal, Avishek Ghosh, Sunita Sarawagi; *Indian Institute of Technology Bombay*

-
-

Motivating Our Approach: PairNet

PairNet Algorithm • PairNet outperforms state-of-the-art ITE estimators across binary and continuous treatment benchmarks with high statistical significance

> Scan QR code to access full paper, code and author homepages

Introduction

Treatment T applied to individual with covariates X leads to outcome $Y(T)$

- **Goal:** estimate Individual Treatment Effect (ITE) $\tau(x, t, t') = \mathbb{E}[Y(t) Y(t') | x]$
- Challenge: outcome is observed only under one treatment T. We can not directly regress τ against (X, T, T) .

Factual Loss: regress *Y* against (X, T) to estimate $\mu(x, t) = \mathbb{E}[Y(t) | x]$, infer ITE $\hat{\tau}(x, t, t') = \hat{\mu}(x, t) - \hat{\mu}(x, t')$. Only utilises factual outcomes; naive strategy.

- **Confounding:** covariates *X* are correlated with treatment T in training data. $\hat{\mu}(x, t)$ incurs higher estimation error where $Pr(t | x)$ is low. Pairing each (x, t, y) with (x, t', y') is impossible.
- **Prior works** address this fundamental problem in two broad ways:
- **A** $\alpha \neq 0$ *Meta-Learners*: two-stage learning, estimate nuisance parameters
- Pseudo-outcomes
Without With $\sum_{r=1}^{\infty}$ • Matching: pair (x, t, y) with "nearby" (x', t', y') ; assume $\mu(x, t') \approx y'$
	- *Generative Models*: model counterfactual distribution Limitations: faulty pseudo-outcome supervision
	- *Regularisation:* balance $\phi(x)$ distributions across treatments
	- \bullet *Reweighting*: inverse weighting with estimated propensity Pr($t | x$)
	- Limitations: lack inductive bias for τ ; poor propensity estimates

- 1. Given training data point (x, t, y)
- 2. Sample alternative treatment t'
- 3. Sample neighbouring data point (x', t') s.t. $d(x, x') = ||\psi(x) - \psi(x')||$ is small
- 4. Optimise (ϕ, μ) to minimise Pair Loss

The probability of the j^{th} sample with treatment t' , being paired with i^{th} sample with treatment t is proportional to the softmax of the negative distance between them, promoting nearby pairing. This induces a distribution over neighbours: $q_t(x' | x, t') \propto e^{-d(x, x')} p_t(x')$

- **Performance Metric:** PEHE error (square root of empirical ITE risk); we also report p-values for a one-sided **paired t-test** comparing PairNet to baselines
-
-
-
-
- PairNet constructs pairs using ψ , the representation ϕ trained on factual loss.
-

We can't simultaneously access $\mu_1(x)$ and μ ₀(x) in training data. Pair sample (x, t, y) with nearby sample $(x', 1 - t, y')$ Matching : $\sum_i (y - y' - \hat{\mu}(x, t) + \hat{\mu}(x, 1 - t))^2$ PairNet : $\Sigma_i(y - y' - \hat{\mu}(x, t) + \hat{\mu}(x', 1 - t))^2$

PairNet avoids pseudo-outcome $\hat{\mu}(x, 1-t)$

● **Datasets:** IHDP, ACIC, and Twins (Binary); TCGA[0-2], IHDP, News (Continuous) ● **PairNet is model agnostic**; can use any T-Learner architecture. We use **TARNet** ● For continuous treatments we consider both **DRNet** and **VCNet** architectures ● Implemented in **JAX** within the **CATENets library** with default hyperparameters $\bullet\,$ Hyperparameters: δ_{pair} (fraction far pairs dropped) and num_z, (# pairs/sample)

Pair Loss can be decomposed into factual loss and residual alignment terms:

> $\sum_{i} (y - \hat{\mu}(x, t))^2 + (y' - \hat{\mu}(x', 1-t))^2$ $-2(y-\hat{u}(x, t))(y'-\hat{u}(x', 1-t))$

The last term promotes a positive correlation among error residuals for near covariates which $E =$ is a necessary inductive bias for ITE estimation.

Theoretical Analysis: Bounds on ITE Risk for Binary Treatment

Define the error residue $r₁$ $\hat{\mu}(x) = \hat{\mu}(x, t) - \mu(x, t); u_t$ ITE risk $\varepsilon_{\text{ITE}} = \int_x (r_1(x) - r_0(x))^2 p(x) dx$ $=\sum_{t}$ $\int_t u_t \left[\int_x r \right]$ t^{\prime} $(x)^2 p_t(x) dx + \int_x r_{1-t}(x)^2 p_t(x) dx - 2 \int_x r^{2} dx$ Pair Loss $\varepsilon_{\text{pair}} = \sum_{t}$ $\int_t u_t \int_x \int_{x'}$ (r_{1}) $r_{1-t}(x^{\prime}))^2 p_t(x^{\prime})$ $=\sum_{t}$ $\int_t u_t \left[\int_x r \right]$ t^{\prime} $(x)^2 p_t(x) dx + \int_{x^t}^1 r_{1-t}(x^t)^2 q_t(x^t) dx^t - 2 \int_{x^t}^1$

Integral Probability Metric $IPM_{G}(p, q)$ = sup_{geG}|

We show that $\epsilon_{\text{ITE}} \leq \epsilon_{\text{pair}} + \sum_t u_t \left[\frac{B \cdot IPM}{G} (p_t, q_t) + 2 \frac{K_{1-t}}{\delta} \delta \sqrt{\epsilon} \frac{I}{F} \right]$

 $\frac{2}{t}/B \in G$. assuming expected neighbour distance $\leq \delta$, r is K_t -Lipschitz and $r_{\tilde{t}}$ \boldsymbol{t} \boldsymbol{t} \boldsymbol{t} The bound converges to zero for large data showing the consistency of PairNet. \longrightarrow $p_1(\mathbf{x})$ This bound is tighter than the bound $q_0(x)$ of Shalit et al. for Factual loss: $q_1(x)$ $\begin{bmatrix} 0 & 1 \end{bmatrix}$ $\epsilon_{\text{ITE}} \leq 2(\epsilon_F^0 + \epsilon_F^0 + B \cdot IPM_{G}(p_0, p_1))$ covariates $X \rightarrow$

$$
,t); u_t = \Pr(t); p_t(x) = \Pr(x \mid t)
$$

$$
\int_{x} r_{t}(x) r_{1-t}(x) p_{t}(x) dx
$$
\n
$$
p_{t}(x) q_{t}(x' | x) dx' dx
$$
\n
$$
2 \int_{x} \int_{x'} r_{t}(x) r_{1-t}(x') p_{t}(x) q_{t}(x' | x) dx' dx
$$

$$
\mathsf{d} \mathsf{p}_{g \in G} | \mathsf{f} g(x) (p(x) - q(x)) dx |
$$

\boldsymbol{t}

$$
(x, 1, y)
$$
\n
$$
(x, 0, y')
$$
\n
$$
(x', 0, y')
$$
\n
$$
(u_0)
$$

Loss = $[(y - y') - (\mu_1(\phi(x)) - \mu_0(\phi(x')))]^2$

') $q_t(x') = \int q_t(x' \mid x, t') p_t(x) dx$

Experiments

● PairNet outperforms matching (kNN) and Factual across different levels of proximity between covariates in a pair ● PairNet is less sensitive to variation in proximity, outperforming factual loss even for random pairs

• PairNet is not very sensitive to hyperparameters δ_{pair} and num_z • When applying Pair Loss to other representation learning T-Learners (CFRNet, DragonNet, FlexTENet) we observe similar performance gains ● We do not observe any statistically significant variation in performance on changing the weight of the residue alignment term $(y - \hat{\mu}(x, t))(y' - \hat{\mu}(x', 1-t))$

- To create pairs for continuous treatm sample treatment
- Then we sample (such that $|t^0 - t'| < 0.05$
- PairNet outperform significantly when size is reduced
-
-
-