Federated Learning (FL)

Learn a Machine Learning model at a central server with contributions from data possessed by multiple clients (without sharing data).

- The server C trains a classifier $f(\theta)$, where θ is obtained by distributed training and aggregation over K clients.
- The hope is that it generalizes on the test dataset D_{test} .

FL Objective

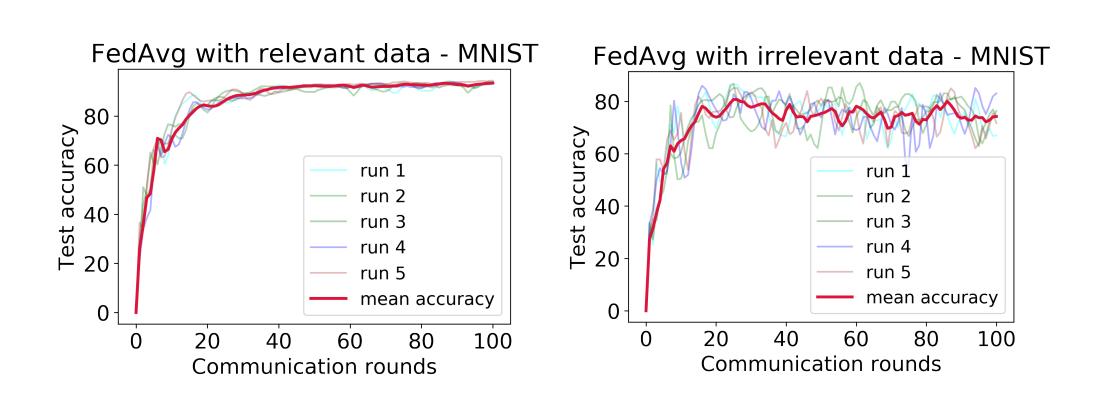
$$\min_{\theta} l(\theta) = \sum_{k=1}^{K} \frac{n_k}{n} l_k(\theta);$$

where $l_k(\theta) = \frac{1}{n_k} \sum_{i \in \mathbb{D}_k} l_i(\theta)(1)$

Challenges in Federated Learning

- Unbalanced data,
- non-IID (Independent and Identically Distributed),
- Participating clients are connected to the server with limited communication bandwidth,
- Privacy of the clients' data.

Noisy Clients in FedAvg



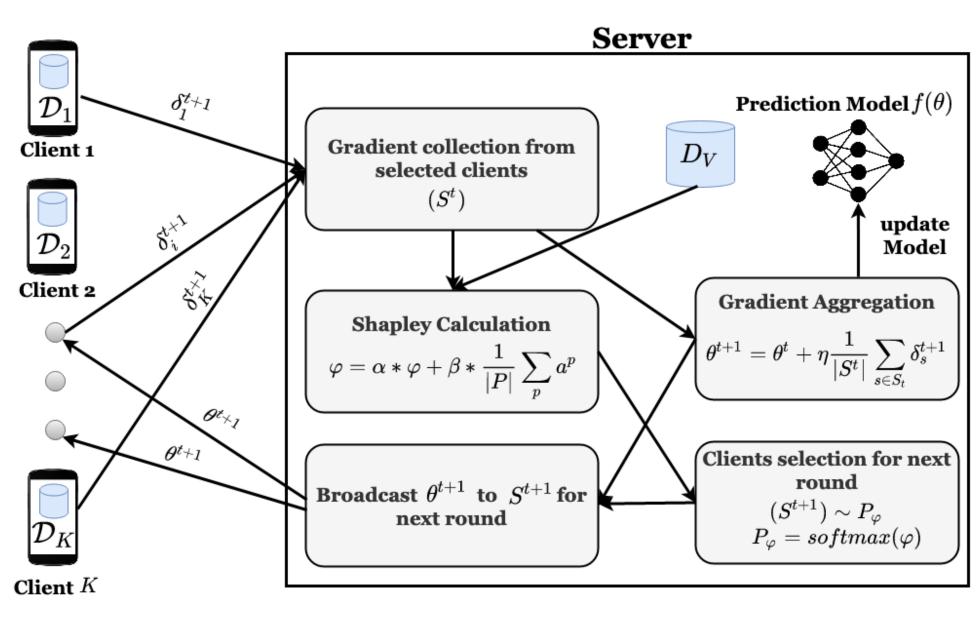
Game of Gradients: Mitigating **Irrelevant Clients in Federated Learning**

Lokesh Nagalapatti, Ramasuri Narayanam

IBM Research-India

Problem Statement

- Develop a mechanism that facilitates the server to prune irrelevant clients.
- Server has no visibility into how each client generates the updates
- Server should evaluate the relevance of a client only working with the updates it receives from clients.
- We refer to these as Federated Relevant Client Selection (**FRCS**) problems.



Solution Approach

Figure 1:FRCS Architecture

Shapley values of Clients

Char. fn - $v(X): 2^{\delta^{t+1}} \to \mathcal{R}$
$\theta_X^{t+1} = \theta^t + \frac{1}{ X } \sum_{s \in X} \delta_s^{t+1}$ $v(X, D_V) = \mathcal{P}(f_{\theta_X^{t+1}}, D_V)$

 \mathcal{P} function denotes the performance of the central model with parameters θ_X^{t+1} on the validation data D_V

Class 0 - Relevant Data Class 0 - Irrelevant Data

