Federated Learning (FL)

Learn a Machine Learning model at a central server
with contributions from data possessed by multiple
clients (without sharing data).

o The server C' trains a classifier f(6), where 0 is
obtained by distributed training and aggregation
over K clients.

e The hope is that it generalizes on the test dataset
D test-

FL Objective

m@inl(@) =
where [;(0) = -

Challenges in Federated Learning

e Unbalanced data,

o non-I1ID (Independent and Identically
Distributed),

e Participating clients are connected to the server

with limited communication bandwidth.

e Privacy of the clients’ data.

Noisy Clients in FedAvg

FedAvg with relevant data - MNIST FedAvg with irrelevant data - MNIST
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Problem Statement FRCS Problems

e Develop a mechanism that facilitates the server to e Selecting relevant clients

prune irrelevant clients. e Selecting Class-label dependent relevant clients
® Server has no VlSlDlhty into how each client O Detectjng label Corruptj()n (uptO permutation)

generates the updates and standardizing corrupted labels
e Server should evaluate the relevance of a client

;)f.liyt\;vorkmg with the updates it receives from FRCS: Relevant clients

ients.

e We reter to these as Federated Relevant Client o
S-FedAvg with irrelevant data - MNIST
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Figure 3:Relevance Scores (Shapley Values)
Shapley values of Clients

FRCS: Class dep. Client Selection

class O - relevant class O - irrelevant
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P tunction denotes the performance of the central

model with parameters %! on the validation data

Dy

Class 0 - Relevant Data, Class 0 - Irrelevant Data

FRCS: Data Label Standardization

Relevance score:
S-FedAvg-label-std.
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Confusion matrix - S-FedAvg-Label std.

0 29 174 0 0 . .

e 0.59% 3.54% 0.0% 0.0% Accuracies for Label std. experiment
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Figure 4:Error correction occurs at round 17 for the blue client

Conclusion

e Studied the impact of noisy clients in Federated
Learning and proposed solution approaches to 3

important FRCS problems.

e At the heart of SFedAvg is Shapley value
Computation

e Scales exponentially with number of players
e Hence we adopt Monte-Carlo approximation

e The approach is applicable as is in Cross-Silo
Federated Learning (involving 10s of 100s of
clients)
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