

nly	Train for CATE leveraging counterfactual samples from the Simulator	Needs Agreement in μ and τ
Dnly	Train only on the real samples in the Observational Data	Good factual prediction $\mu(\mathbf{x}(t),$ t). But fails for CF $\mu(\mathbf{x}(t), 1-t)$.
-Si	Learns Causal reps on Synthetic CF Samples and applies as-in to real samples.	Works well only when g = g s

mparison w	ith SC		
	IHDP	ACIC-2	ACIC-7
Vie & Wager, 2021)	1.54(0.00)	3.30(0.00)	5.91(0.04)
ünzel et al., 2019)	1.0(0.00)	0.43(0.15)	5.49(0.17)
Schwab et al., 2020)	0.96(0.00)	0.24(0.59)	5.53(0.15)
(Shalit et al., 2017)	0.96(0.00)	0.36(0.26)	5.55(0.15)
et (Curth & van der Schaar, 2021)	0.96(0.00)	0.32(0.32)	5.46 (0.19)
et (Shi et al., 2019)	0.96(0.00)	0.29(0.41)	5.57(0.14)
bins et al., 1994)	0.96(0.00)	0.36(0.24)	5.56(0.15)
uart, 2010)	0.96(0.00)	0.33 (0.33)	5.48(0.18)
atch (Schwab et al., 2018)	0.98(0.00)	0.56(0.11)	5.75(0.08)
R (Wu et al., 2023)	1.01(0.00)	1.09(0.03)	5.56(0.15)
Wang et al., 2024)	0.96(0.00)	0.27(0.47)	5.55(0.15)
Nagalapatti et al., 2024b)	0.97(0.00)	0.12(0.85)	5.46 (0.23)
	0.94(0.00)	0.00 (0.98)	6.65(0.00)
	0.83 (0.13)	11.23(0.01)	14.81(0.05)
^{1}f	0.96(0.00)	0.17(0.76)	5.57(0.14)
et	0.79 (0.00)	0.26(0.00)	5.04 (0.00)

Across Real/Sim Gaps

		Synthetic-Gaussian				Real World-IHDP			
$f_t^S)$	$d(au, au^S)$	SimOnly	RealOnly	$\operatorname{Real}_{\mu}\operatorname{Sim}_{f}$	SimPONet	SimOnly	RealOnly	$\operatorname{Real}_{\mu}\operatorname{Sim}_{f}$	SimPONet
	high	2.82(0.27)	0.00 (1.00)	15.75(0.01)	2.58 (0.00)	3.57(0.11)	0.00 (1.00)	48.76 (0.05)	3.20 (0.00)
	low	0.63 (0.00)	2.47(0.02)	1.19(0.01)	0.54(0.00)	1.00 (0.44)	3.43(0.02)	2.73(0.00)	0.97 (0.00)
	high	1.57(0.16)	2.47(0.08)	1.19(0.83)	1.39 (0.00)	1.62 (0.26)	3.43(0.04)	2.73(0.02)	1.49 (0.00)
	low	2.14 (0.22)	2.47(0.00)	$15.75\ (0.01)$	1.85(0.00)	3.67(0.31)	3.43 (0.48)	48.76(0.05)	3.37 (0.00)
	high	2.82(0.26)	2.47 (0.56)	15.75(0.01)	2.57 (0.00)	3.57(0.11)	3.43 (0.39)	48.76 (0.05)	3.19 (0.00)
	low	0.63 (0.00)	13.86(0.02)	1.19(0.01)	0.54(0.00)	1.00 (0.47)	47.78 (0.06)	2.73(0.00)	0.98 (0.00)
	high	1.57(0.16)	$13.86\ (0.03)$	1.19(0.83)	1.39 (0.00)	1.62 (0.27)	47.78 (0.06)	2.73(0.02)	1.50 (0.00)
	low	2.14 (0.21)	13.86(0.03)	15.75(0.01)	1.85(0.00)	3.67 (0.31)	47.78 (0.06)	48.76 (0.05)	3.38 (0.00)
	high	2.82 (0.26)	13.86(0.04)	15.75(0.01)	2.57(0.00)	3.57(0.11)	47.78 (0.06)	48.76 (0.05)	3.19 (0.00)

Real and Simulator DGPs assume linear functions $d(f_0, f_1)$: Impact of T on covariates.

 $d(f_t, f_t^S)$: Gap between real and simulated Covariates

 $d(au, au^S)$: Gap between real and simulated Treat. Effects

Conclusion

• We estimated CATE from post-Treatment covariates using a simulator.

• SimPONet uses the simulator only to the extent it enhances CATE beyond what training on real data alone can achieve. • Across DGPs, and across CATE Baselines, SimPONet proved to be the best CATE

estimator for post-T covariates