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What is Embedding???

• Embedding refers to low dimensional representation of an entity,
may it be word,node in a graph etc.

• Network Embedding is a method of learning low dimensional
representation of individual nodes of a given network using the
network structure and the available domain knowledge about the
network.

• The basic aim in learning network embedding is to ensure that
embedding of nodes in close proximity should be similar.
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Heterogeneous Information Network

• An Information network defined as a directed graph G(V,E) with
an object type mapping function τ : V → O and a link type
mapping function φ : E → R , where each object v ∈ V belongs
to one particular object type τ(v) ∈ O, each link e ∈ E belongs
to a particular relation φ(e) ∈ R. When the type of objects
|O| > 1 or the type of relations |R| > 1, then the network is
called Heterogeneous Information Network.
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Some Embedding learning methods for Homogeneous
Network

• Adjacency Matrix - Here dimensions are equal to number of
nodes.

• DeepWalk -Make use of a random walk over graph to find
neighbours of a node and then uses word2vec to learn embedding.

• Node2Vec - Make use of biased Random walk which oscillates
between BFS and DFS to capture network neighbourhood, and
finally uses word2vec to learn embeddings.

• LINE - Calculates 1st and 2nd order proximity of a node to learn
network embedding.
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Task Guided and Path Augmented Heterogeneous Network
Embedding for Author Identification

T Chen and Y Sun
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Paper Introduction

• This paper discusses about identifying author of a anonymous
paper in a double blind review setting.

• Similarity between nodes in the graph is defined by the cosine
similarity between their embeddings.

• Loss function is defined in such a way that,if the embedding of all
the nodes are correctly captured respecting all the network
structure and semantics, the cosine similarity would reveal the
true authors.
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Task Guided Embedding learning

• Paper embedding is weighted average of average of all the
neighbours.

• Other embeddings are as learnt by the algorithm.

• Vp =
∑

t wtV
(t)
p

• V
(t)
p =

∑
n∈X (t)

p

un
|X t

p |

7 of 18

Lokesh N,Aayush Moroney - All2Vec



Negative Sampling

• It is a method of obtaining sample of nodes from a graph for
optimization purposes because considering all nodes in a graph for
each optimization iteration may cost huge amount of time.

• Nodes are sampled based on Power Law Degree Distribution.
• Power Law states that fraction P(k) of nodes having degree k

goes for large value of k as, P(k) ∼ k(-γ) , where γ is a
parameter whose value lies in the range 2 to 3.
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Task Guided Embedding

◦ Task is to learn embeddings such that real authors of paper should
have highest similarity with the paper.

◦ Sample - (p,a,a
′
), p is sampled paper, a is true author of p and a

′
is

negative sampled author.
◦ Here objective is to make p more similar to a than a

′
.

◦ Natural choice of loss function is Hinge Loss.
◦ Loss = max(0, p.a

′ − p.a + ζ)
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Path Augmentation

• Along with task specific loss, they have also considered a general
purpose loss function which tries to predict the link between two
nodes.

• Given that Graph is Heterogeneous, they have utilized the rich
semantics by using different meta-paths to define network
neighbourhood. Meta-Paths are selected based on the task at
hand.

• Exploring all the metapaths is a combinatorially difficult problem.
• Assuming some fixed meta-paths through some prior domain

knowledge the way they learn the embeddings is by defining a
convex combination of task-specific and network general loss
functions.

• Loss = ω1 ∗ Ltask−guided + ω2 ∗ Lpath−augmented . 10 of 18
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Moving to our Approach
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Problems with path Augmentation Approach

• Till date there are no specific approaches to select optimal
meta-path for a task.

• No set of predefined meta-paths would generalize to all
tasks/datasets.

• Thatswhy we decided not to use meta-path based approach.

• Removing meta-path based component from baseline paper would
not deliver promising results.
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Our Approach

• Our’s is a network general objective.
• We try to learn the importance of each relation along with the

embedding.
• Every relation has some significance and it is very unlikely to be

uniform.
• Hence we have to define mechanisms to learn the importance

adaptively according to network structure, data sparsity and other
relevant attributes.

• Therefore it is intuitively appealing to incorporate this importance
somehow in the loss function so that gradient flow takes care of
this by itself.
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Our loss function is so big that it deserves a single
slide of attention.

L=αPAmax(0,PTAT − PTANP) + αPCmax(0,PTCT − PTCNP) +
αPKmax(0,PTKT − PTKNP) + αAPmax(0,ATPT − ATPNA) +
αKPmax(0,KTPT − KTPNK ) + αCPmax(0,CTPT − CTPNC ) +
αPRmax(0,PTRT − PTRNP)

• min
αij ,Un

L.

• Our Tuple for this loss function will be
(Pt ,At ,Anp,Ct ,Kt ,Knp,Rt ,Rnp,Pna,Pnc ,Pnk).
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Gradient Calculations

∂L

∂αpa
= max(0,PTAT − PTANP)

∂L

∂PT
= αpa ∗ (AT − ANP) + αpc ∗ (CT − CNP) + αpk ∗ (KT − KNP)

+αpr ∗ (RT − RNP) + αap ∗ AT + αkp ∗ KT + αcp ∗ CT
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lokesh
Typewriter
New Results after Mid Term

1. Added a regulariizer in the loss function ||term||2 

2. Added a constraint max(0, 1-alpha_ij) to ensure that alphas are always positive

3. Got the results for dblp dataset and compared the results against node2vec and the results are positive.



Results
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Results
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Results
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