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Introduction

▶ Causal Inference is all about what is the effect of X on Y
▶ Machine learning is all about learning a function that

navigates X → Y
▶ The goal is to apply f on unforeseen X

▶ Deep Learning is all about approximating the function
fθ : X → Y using neural nets

▶ fθ is only as good as the data we throw at it
▶ This begs the question: What is the right data?

▶ Whatever makes fθ(xtest) = ytest



A Running Example for Causal Inference

Figure: Impact of sleeping with shoes “ON” on headache the following
morning. Credits - Brady Neal



Fundamental Problem in Causal Inference

Name Covariates Headache|Shoes Headache |¬shoes

A α Y NaN
B β Y NaN
C γ NaN N
D δ NaN N



ML aids Causal Inference

If we know to hallucinate the values of NaN in the observational
data, computation of Causal effect is straight forward.

Machine learning is good at it!

These hallucinations are called counterfactuals.

▶ Before a binary event occurs, there are two potential
outcomes Y (0),Y (1). If the event 1 occurs, then Y (0) is a
counterfactual.

▶ There is no way to assess the correctness of estimated Y (0)
other than placing our bets on statistical significance of our
belief on it.



Structural Causal Model - Key to Causal Inference

Figure: Causal GAN. Credits - M Kocaoglu et. al. 2017



SCM is not learnable from observational data

▶ We cannot learn an SCM just given the observational data

▶ In practice, it is specified by domain knowledge

▶ To be able to learn from observational data, we need to have
the capacity to perform Randomized Control Trials



Generating Counterfactual Images given the SCM

Figure: Causal GAN architecture. Image Credits: Causal GAN paper



Causal GAN objective:

minGEx∼pdata [log(D(x))] + Ex∼pg

[
log

(
1− D(x)

D(x)

)]
− 1

d

d∑
j=1

ρjEx∼Pg (x |lj=1) [log(DLR(x)[j ])]− (1− ρj)Ex∼Pg (x |lj=0) [log(1− DLR(x)[j ])]

+
1

d

d∑
j=1

ρjEx∼Pg (x |lj=1) [log(DLG (x)[j ])]− (1− ρj)Ex∼Pg (x |lj=0) [log(1− DLG (x)[j ])]

Take it from this slide that generating counterfactual is not a



Causality inspired Algorithmic Recourse
We are interested in only Actionable recourse. i .e. recourse should
not ask an individual to become 1 year younger to get desired
label.

▶ Recourse > Explanations

▶ Beyond explanation, we need to show the path to obtain a
better label

▶ Thus any recourse solves the following optimization problem

xCF = argminx ′cost(x , x
′ = h(x))

s.t. y(x) < y(h(x))

dist(x , h(x)) ≤ ϵ

h(x) suggests causal interventions because otherwise the one
who deployed ML as a service can be exploited to the likes of
her users. Eg. Adversarial perturbations.

Hope



Moving to the Project · · ·



Introduction & Motivation

▶ ML models tend to perform well on data that is i .i .d . sampled from train
distribution and fail to generalize well to unseen instances.

▶ We want to train a recourse model alongside a classifier so that we know
what is out of distribution and try to transform it to be in-distribution.

▶ Our motivation stems from the result we show
left.

▶ For CIFAR dataset, we observe that for almost
every misclassified image, as we vary a parameter
(brightness), there is a range of values where the
classifier emits the right label



An RL based baseline

Figure: Improving Object detection through Reinforcement Learning.
Image credits: S Nayak et. al. 2020



Label space of the classifier is smooth



Insights so far

▶ For each image, there is a sweet spot of values of β where the
likelihood of correct label is high

▶ If we know the range through a function (say gϕ), the
classifier accuracy will be high!

▶ Thus we can think of such a function as providing recourse to
the classifier

▶ What becomes more interesting is to learn both the recourse
and classifier together

We can think of the above problem as a continuous armed bandit
problem. Because the reward (probability of the correct label) is
smooth, perhaps exploration is easy.



Proposed Solution

Learning Recourse on Instance Environment to Enhance
Prediction Accuracy



The way we think about the problem

Figure: Architecture of Proposed Approach. The chair image on the top
does not need recourse and attains the correct label from fθ. However,
the bottom image obtains the correct label only after recourse.



All models problems are good but some are useful have datasets



Dataset

Figure: This figure shows renderings of a chair object under different βs.
Each β is a 3-tuple namely (view, zoom-level, light color).



▶ z ∈ Z represents a groud truth object

▶ β ∈ B represents the instance enviroment

▶ Z : Z × B → X is the latent physical process (camera) that
generates the images

▶ Medium of instruction to the user: B
▶ Training Dataset D = {yi , {xij ,βij}j∈Bi

}



Solution Approach RecourseNet

We propose to tackle the problem by learning three modules. We
perform a three stage sequential training approach. The three
modules are.

▶ A classifier fθ : X × Y → [0, 1]

▶ A recourse trigger network π : X × B → {0, 1}
▶ A recourse recommender network gϕ : X × B × B → [0, 1]



Learning Objective

max
θ,ϕ,π

∑
i∈D
j∈B

log

[ (
1− π(xij ,βij)

)
fθ(yi | xij)

+ π(xij ,βij)fθ(yi |Z (zi , argmaxβ gϕ(β | xij ,βij)))

]
(1)

subject to,
∑

i∈D,j∈B
π(xij) ≤ b, (2)

π(xij ,βij) ∈ {0, 1} (3)



Learning Recourse aware fθ

▶ Training fθ on entire training data may be suboptimal
especially when some bad instances will be recoursed at test
time.

▶ We first greedily select the instances that might be recoursed
and then train the classifier on the remaining instances.

Recourse∆(θ, xij , yi ) = {β′ ∈ Bi | log fθ

(
yi | Z(zi ,β

′)
)

> log fθ
(
yi | xij

)
+ ∆} (4)

and then we pose the following training problem to learn θ.

max
θ,π

∑
i∈D
j∈Bi

[ (
1 − π(xij ,βij )

)
log fθ(yi | xij ) + π(xij ,βij ) max

βir∈Recourse∆(θ,xij ,yi )
log fθ(yi | xir )

]

subject to,
∑

i∈D,j∈Bi

π(xij ,βij ) ≤ b, and π(xij ,βij ) ∈ {0, 1}. (5)



Next we learn gϕ for a trained fθ

We take note that gϕ has a role to play only when π = 1. In
otherwords, when an input instance (x,β) is bad.

But how do we know what is bad, and for those that are bad how
do we search for good examples?

A simple idea: In a group of Bi examples for the object i , why
not make the least loss example the good one and bottom δ
examples the bad ones?



Noisy Supervision

We can immediately guess that such a heuristic will lead to a lot of
noise in supervision provided to gϕ.

We have this as a baseline and we will see that this baseline does
not work well.



Our Solution Approach for gϕ

Idea:

▶ If gϕ(x,β) = β′, then fθ(x
′)[y ] better be high

▶ But what if x′ ̸∈ D? We definitely do not want to generate
counterfactual images.

But we need to hallucinate something to make progress

▶ We hallucinate the probability of correctness of x′ from fθ had
it been ∈ D

▶ Our counterfactual confidence is given by:

f CF(y |x,β) =

∑
(i ,j)∈V :yi=y ,βij=β

fθ̂(yi = y | xij)∑
(i ,j)∈V :yi=y ,βij=β

1
(6)



Let Dδ be the set of groups of examples ∈ D that have atleast one
example in the group with loss < δ. Dδ = {i |minj lossij < δ}
Then we learn gϕ using the following objective:

max
ϕ

∑
i∈Dδ

∑
j∈Bi

max
r∈Bi

log [fθ(yi | xir ) gϕ(βir | xij ,βij)]

+
∑
i ̸∈Dδ

∑
j∈Bi

log gϕ
(
argmaxβ f CF(yi | xij ,β) | xij ,βij

)
(7)



Computation of π

π(xij ,βij) = [f CF(ymax | xij ,β′
ij) > f

θ̂
(ymax,i | xij)] (8)



Recourse Performance

(a) Shapenet-Large (b) Shapenet-Small

Figure: Variation of classification accuracy after recourse against the
budget b, , the maximum number of instances selected for recourse for
both Shapenet-Large and Shapenet-Small datasets for the recourse
trigger π provided by RecourseNet, score based recourse and full
automation recourse.



Recourse Recommender Performance

(a) Shapenet-Large. (b) Shapenet-Small.

Figure: Variation of classification accuracy after recourse against the
budget b, , the maximum number of instances selected for recourse for
both Shapenet-Large and Shapenet-Small datasets for the recourse
recommender gϕ provided by RecourseNet, Only ϕ, RecourseNet
with f CF and Constant.



Why is constant not appreciable?

(a) Shapenet-Large (b) Shapenet-Small

Figure: Accuracy of different recourse recommenders for different classes.



Moving to our current problem (work in progress)



Dataset !

▶ The key to our earlier solution is that we have access to Bi

examples for many i

▶ In practice, we may not have that.

▶ Perhaps, it is nice to make an alternative assumption: User
will give us a small dataset D of her likes and we can
additionally ask for b instances of our likes in an iterative
manner

▶ Then, can we solve RecourseNet? Now, what does it
mean for us to judiciously exhaust the query budget?

▶ Also can we solve RecourseNet effectively when β is
continuous?



A glimpse on Recoursed images (Skin-Lesion detection
task)

Figure: Skin Lesion Detection.



Thank You!


