A Brief Introduction to Causal Inference

Brady Neal

causalcourse.com

What is causal inference?

Inferring the effects of any treatment/policy/intervention/etc.

What is causal inference?

Inferring the effects of any treatment/policy/intervention/etc.

Examples:

- Effect of treatment on a disease
- Effect of climate change policy on emissions
- Effect of social media on mental health
- Many more (effect of X on Y)

Motivating example: Simpson's paradox

Correlation does not imply causation

Then, what does imply causation?

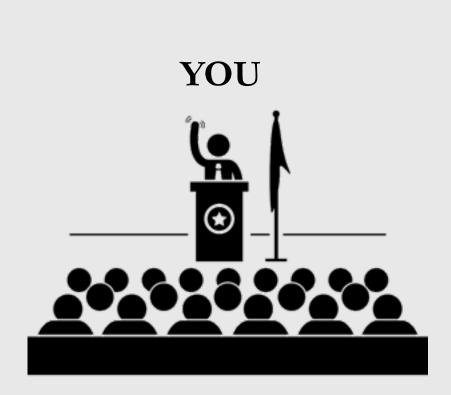
Simpson's paradox: COVID-27

New disease: COVID-27

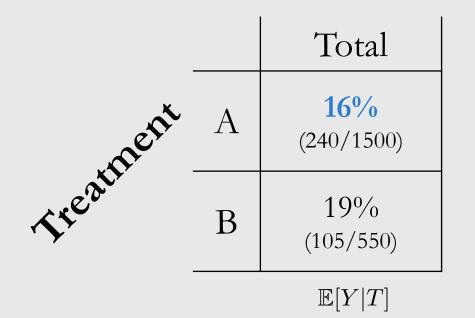
Treatment T: A (0) and B (1)

Condition C: mild (0) or severe (1)

Outcome Y: alive (0) or dead (1)



Simpson's paradox: mortality rate table



Simpson's paradox: mortality rate table

Condition

		Mild	Severe	Total
ment	А	15% (210/1400)	30% (30/100)	16% (240/1500)
Treatment	В	10% (5/50)	20% (100/500)	19% (105/550)
		$\mathbb{E}[Y T, C=0]$	$\mathbb{E}[Y T, C = 1]$	$\mathbb{E}[Y T]$

Simpson's paradox: mortality rate table

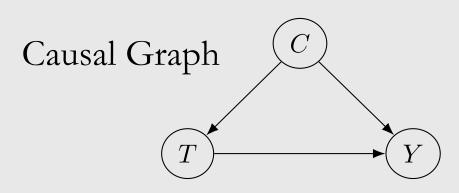
Condition

		Mild	Severe	Total	
ment	А	15% (210/1400)	30% (30/100)	16% (240/1500)	$\frac{1400}{1500} (0.15) + \frac{100}{1500} (0.30) = 0.16$
Treatment	В	10% (5/50)	20% (100/500)	19% (105/550)	$\frac{50}{550}(0.10) + \frac{500}{550}(0.20) = 0.19$
		$\mathbb{E}[Y T, C=0]$	$\mathbb{E}[Y T, C = 1]$	$\mathbb{E}[Y T]$	

Motivating example: Simpson's paradox

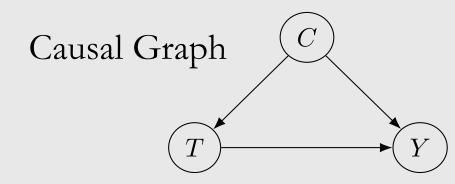
		Condition			
		Mild	Severe	Total	
Treatment	А	15% (210/1400)	30% (30/100)	16% (240/1500)	
Treats	В	10% (5/50)	20% (100/500)	19% (105/550)	

Condition



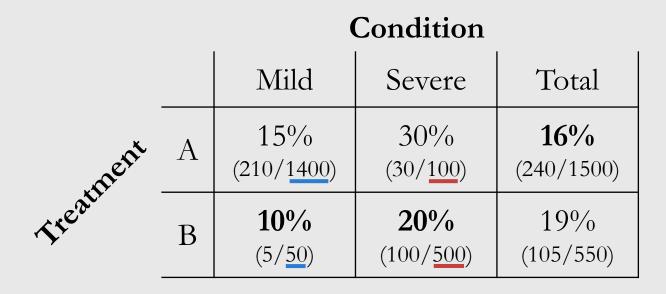
Brady Neal

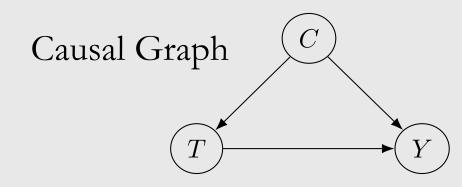
		Condition			
		Mild	Severe	Total	
Treatment	А	15% (210/1400)	30% (30/100)	16% (240/1500)	
Treat	В	10% (5/ <u>50</u>)	20% (100/500)	19% (105/550)	

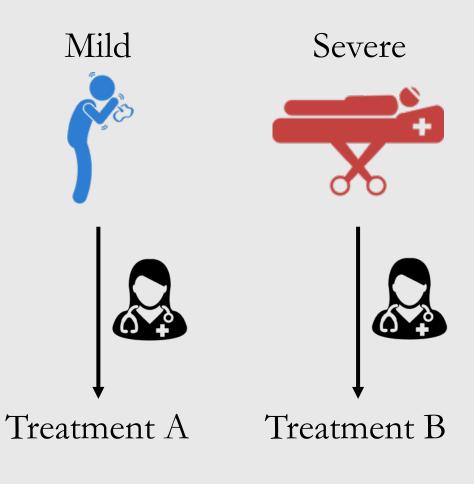


Brady Neal

Motivating example: Simpson's paradox







Brady Neal

Motivating example: Simpson's paradox

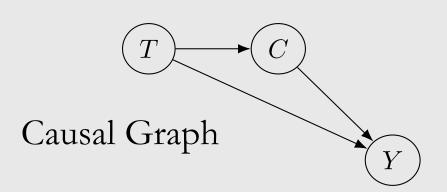
		Condition			
		Mild	Severe	Total	
Treatment	А	15% (210/1400)	30% (30/100)	16% (240/1500)	
Treats	В	10% (5/50)	20% (100/500)	19% (105/550)	

Condition

Brady Neal

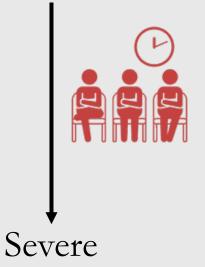
		Condition			
		Mild	Severe	Total	
Treatment	А	15% (210/1400)	30% (30/100)	16% (240/1500)	
Treats	В	10% (5/50)	20% (100/500)	19% (105/550)	

Condition

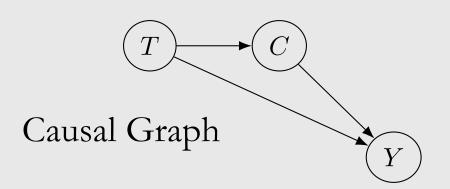


		Condition			
		Mild	Severe	Total	
Treatment	А	15% (210/1400)	30% (30/100)	16% (240/1500)	
Treats	В	10% (5/ <u>50</u>)	20% (100/ <u>500</u>)	19% (105/550)	

Condition



Treatment B



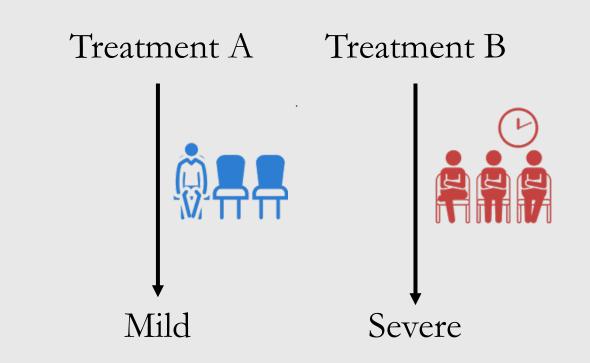
Brady Neal

Motivating example: Simpson's paradox

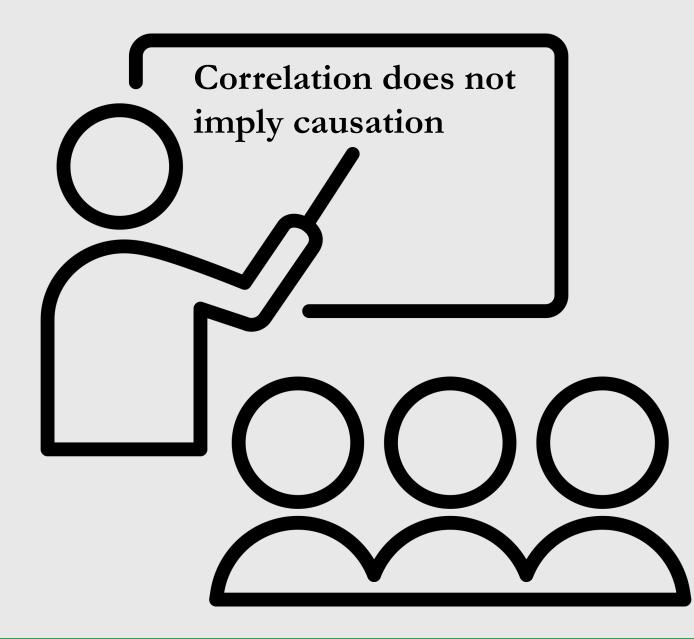
		Condition			
		Mild	Severe	Total	
Treatment	А	15% (210/1400)	30% (30/ <u>100</u>)	16% (240/1500)	
Treat	В	10% (5/ <u>50</u>)	20% (100/ <u>500</u>)	19% (105/550)	

Condition

$\begin{array}{c} T & C \\ C \\ Causal Graph \\ Y \end{array}$



Motivating example: Simpson's paradox



Brady Neal

Correlation does not imply causation

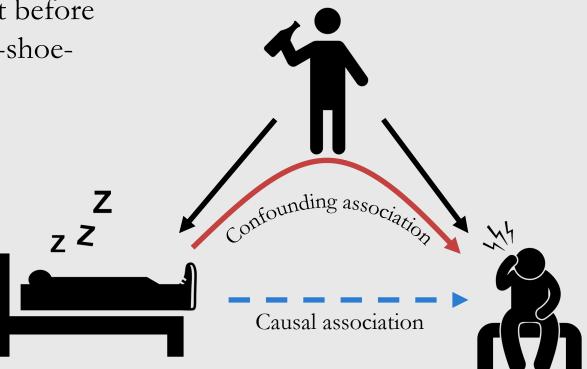
Correlation does not imply causation

Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

- Shoe-sleepers differ from non-shoesleepers in a key way
- 2. Confounding

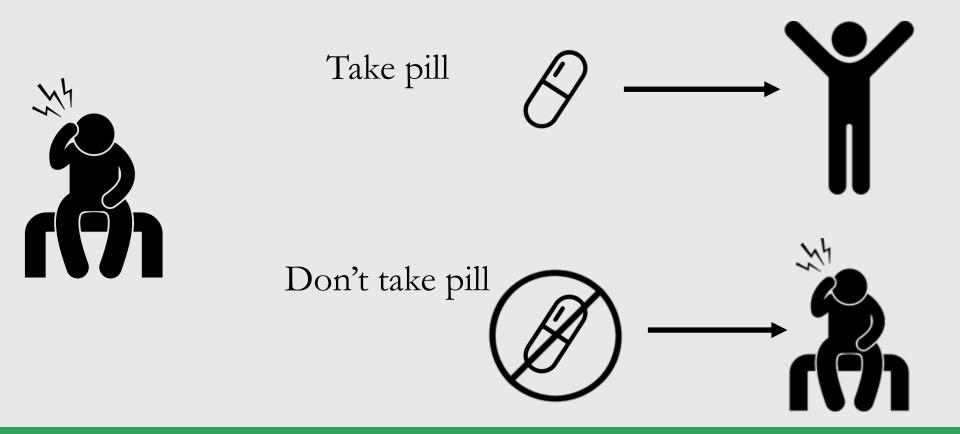
Total association (e.g. correlation): mixture of causal and confounding association



Then, what does imply causation?

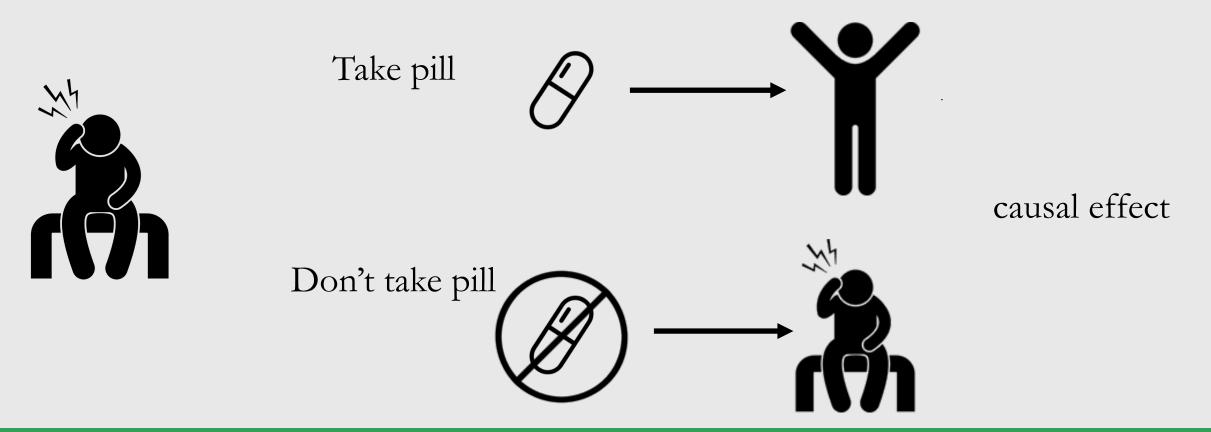
Potential outcomes: intuition

Inferring the effect of treatment/policy on some outcome



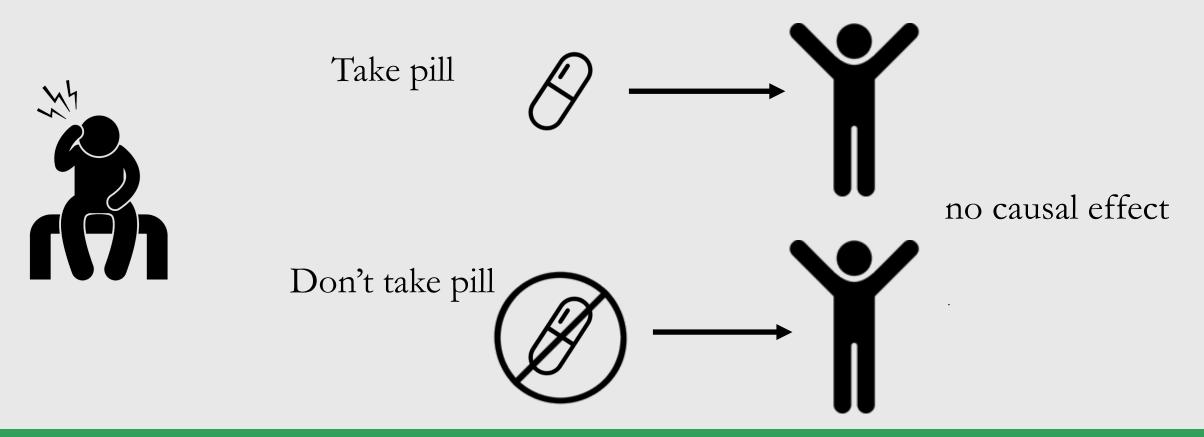
Potential outcomes: intuition

Inferring the effect of treatment/policy on some outcome

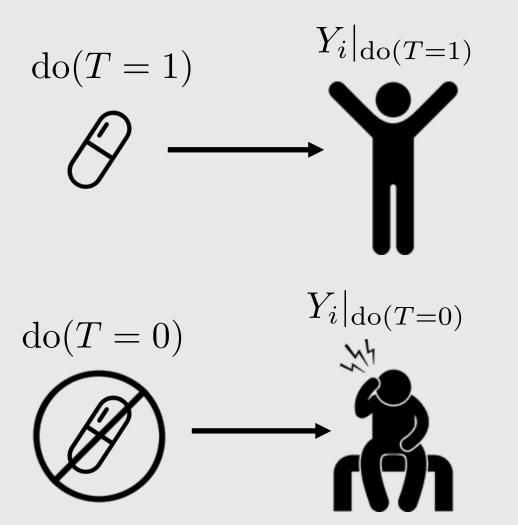


Potential outcomes: intuition

Inferring the effect of treatment/policy on some outcome



Potential outcomes: notation



- T : observed treatment
- Y : observed outcome
- *i* : used in subscript to denote a specific unit/individual

Brady Neal

Potential outcomes: notation

$$do(T = 1) \qquad \begin{array}{c} Y_i|_{do(T=1)} \triangleq Y_i(1) \\ \swarrow \\ \swarrow \\ V_i|_{do(T=1)} \triangleq V_i(0) \end{array}$$

$$do(T = 0) \xrightarrow{I_i | do(T=0)} - I_i(0)$$

T : observed treatment

- Y : observed outcome
- *i* : used in subscript to denote a specific unit/individual
- $Y_i(1)$: potential outcome under treatment
- $Y_i(0)$: potential outcome under no treatment

Causal effect $Y_i(1) - Y_i(0)$

Fundamental problem of causal inference

Counterfactual

- $Y_i(0) = 0$ $\operatorname{do}(T=0)$
- : used in subscript to denote a

: observed treatment

: observed outcome

T

Y

i

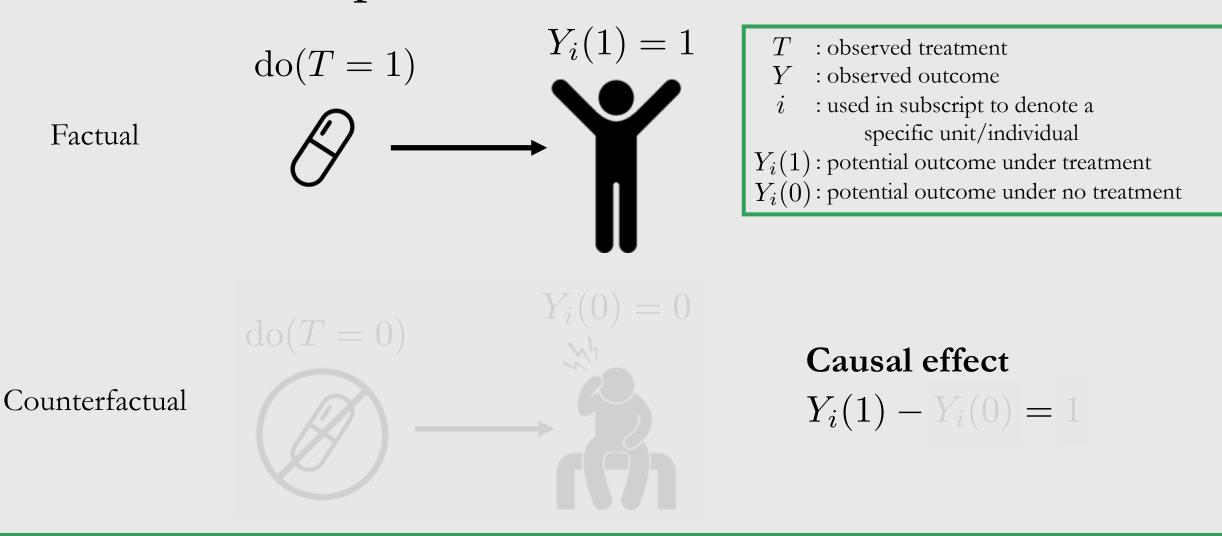
- specific unit/individual
- $Y_i(1)$: potential outcome under treatment
- $Y_i(0)$: potential outcome under no treatment

Factual

Causal effect $Y_i(1) - Y_i(0) = 1$

Brady Neal

Fundamental problem of causal inference



Brady Neal

Then, what does imply causation?

Average treatment effect (ATE)

Individual treatment effect (ITE): $Y_i(1) - Y_i(0)$

Average treatment effect (ATE): $\mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$ $\neq \mathbb{E}[Y|T = 1] - \mathbb{E}[Y|T = 0]$ T : observed treatment

- Y : observed outcome
- *i* : used in subscript to denote a specific unit/individual
- $Y_i(1)$: potential outcome under treatment
- $Y_i(0)$: potential outcome under no treatment
- Y(t): population-level potential outcome

Motivating example: Simpson's paradox

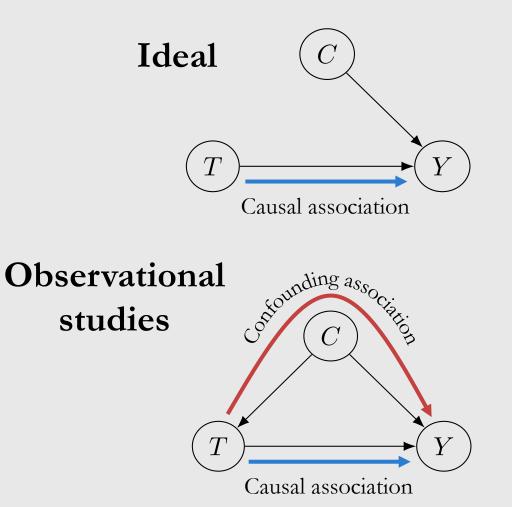
Correlation does not imply causation

Then, what does imply causation?

Observational studies

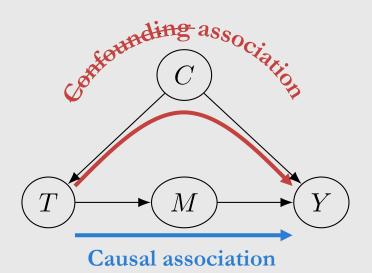
Can't always randomize treatment

- Ethical reasons (e.g. unethical to randomize people to smoke for measuring effect on lung cancer)
- Infeasibility (e.g. can't randomize countries into communist/capitalist systems to measure effect on GDP)
- Impossibility (e.g. can't change a living person's DNA at birth for measuring effect on breast cancer)



How do we measure causal effects in observational studies?

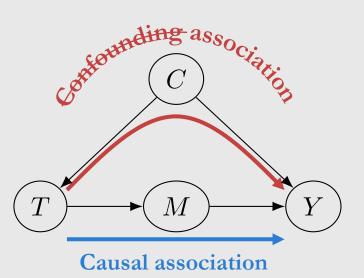
Adjust/control for the right variables W.



Brady Neal

Adjust/control for the right variables W. If W is a sufficient adjustment set, we have

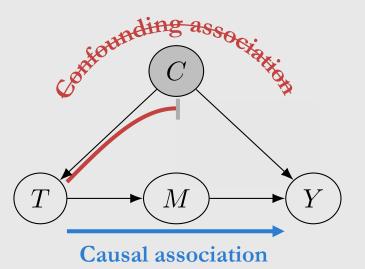
 $\mathbb{E}[Y(t)|W=w] \triangleq \mathbb{E}[Y|\mathrm{do}(T=t), W=w] = \mathbb{E}[Y|t, w]$



Brady Neal

Adjust/control for the right variables W. If W is a sufficient adjustment set, we have

 $\mathbb{E}[Y(t)|\underline{W}=w] \triangleq \mathbb{E}[Y|\mathrm{do}(T=t), \underline{W}=w] = \mathbb{E}[Y|t, \underline{w}]$

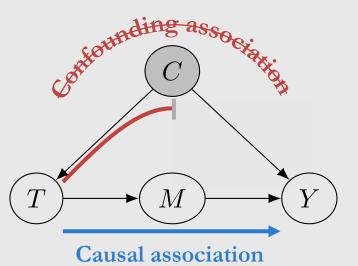


Brady Neal

Adjust/control for the right variables W. If W is a sufficient adjustment set, we have

$$\mathbb{E}[Y(t)|\underline{W=w}] \triangleq \mathbb{E}[Y|\mathrm{do}(T=t), \underline{W=w}] = \mathbb{E}[Y|t, \underline{w}]$$

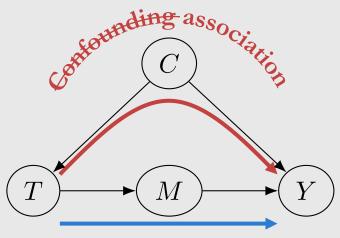
$$\mathbb{E}[Y(t)] \triangleq \mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t, W]$$



Brady Neal

Solution: backdoor adjustment

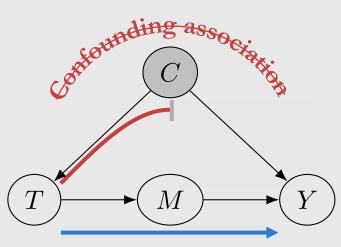
 $\mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t, W]$



Causal association

Solution: backdoor adjustment

 $\mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t, W]$

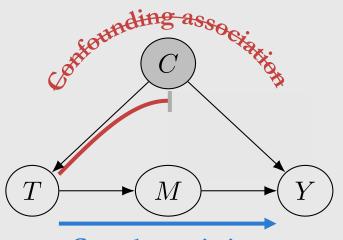


Causal association

Solution: backdoor adjustment

 $\mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t, W]$

Shaded nodes are examples of sufficient adjustment sets W

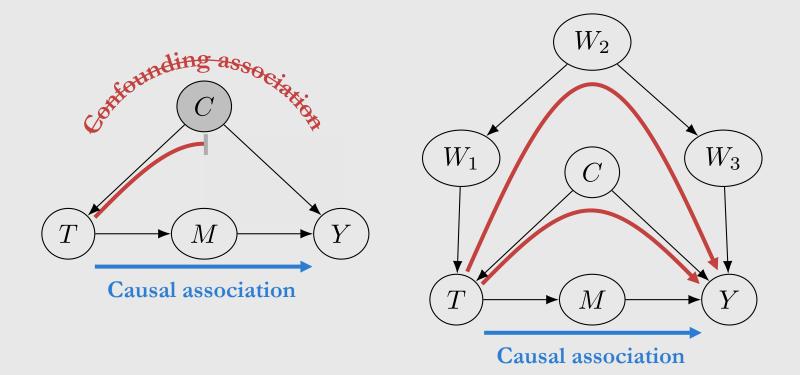


Causal association

Brady Neal

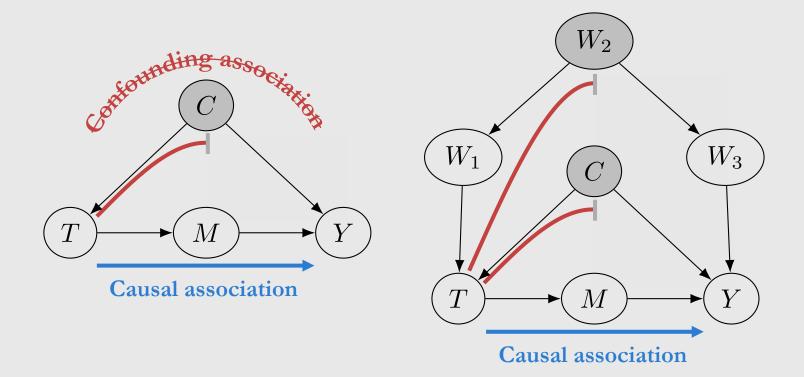
 $\mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t, W]$

Shaded nodes are examples of sufficient adjustment sets W



 $\mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t, W]$

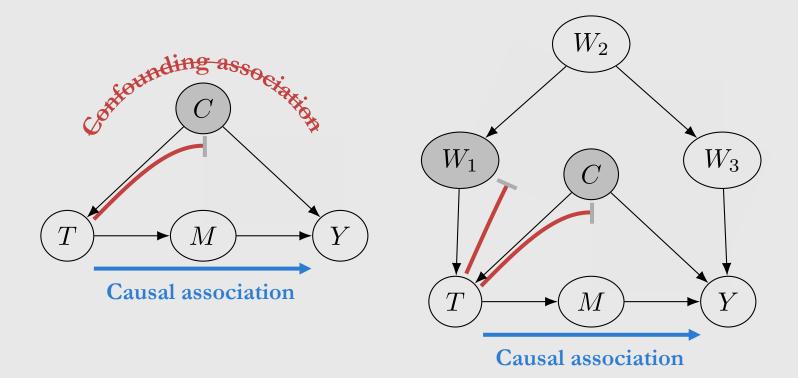
Shaded nodes are examples of sufficient adjustment sets W



Brady Neal

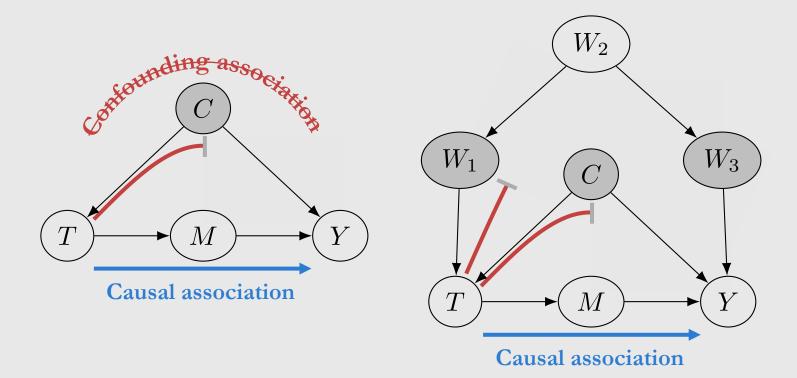
 $\mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t, W]$

Shaded nodes are examples of sufficient adjustment sets W



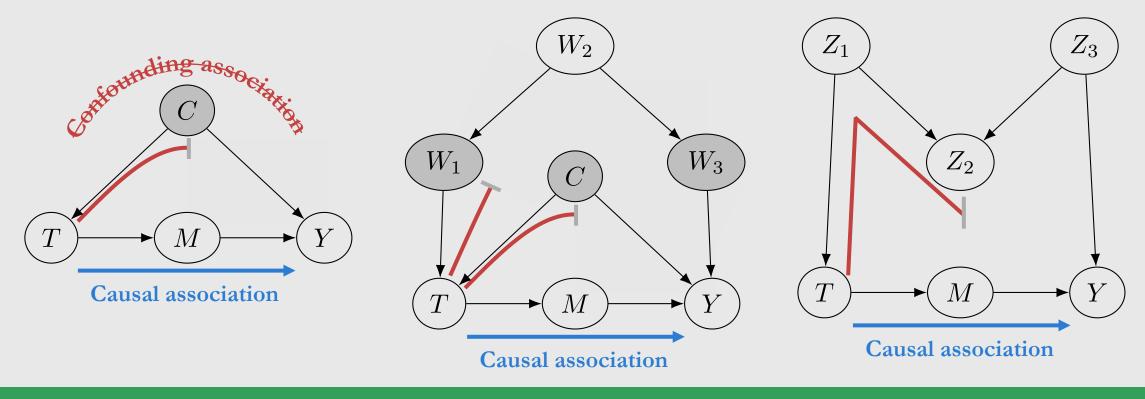
 $\mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t, W]$

Shaded nodes are examples of sufficient adjustment sets W



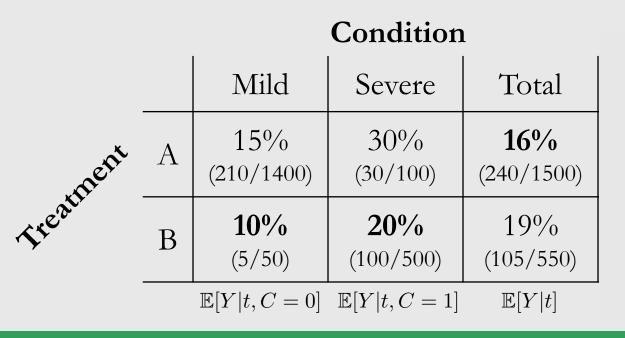
 $\mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t, W]$

Shaded nodes are examples of sufficient adjustment sets W

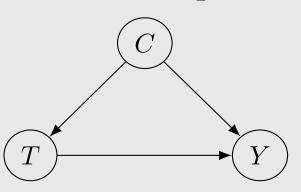


Brady Neal

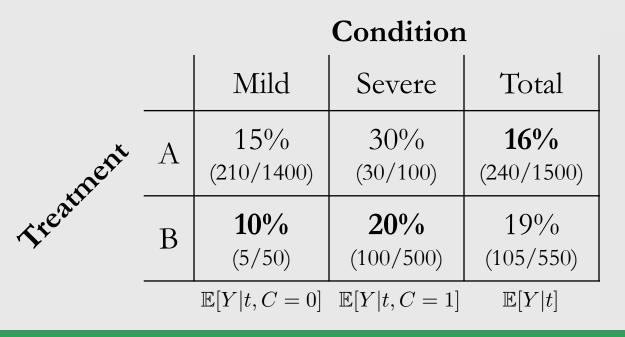
 $\mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t, C]$



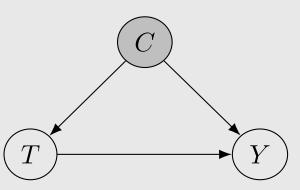
Causal Graph



 $\mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t, C]$



Causal Graph

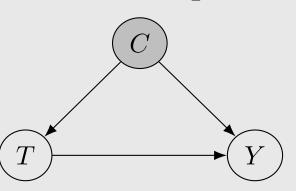


$$\mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t, C] = \sum_c \mathbb{E}[Y|t, c]P(c)$$

Condition

		Mild	Severe	Total
Treatment	А	15% (210/1400)	30% (30/100)	16% (240/1500)
	В	10% (5/50)	20% (100/500)	19% (105/550)
		$\mathbb{E}[Y t, C=0]$	$\mathbb{E}[Y t, C=1]$	$\mathbb{E}[Y t]$

Causal Graph

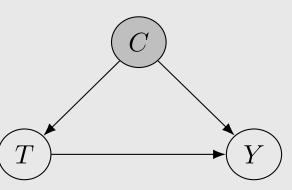


$$\mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t, C] = \sum_c \mathbb{E}[Y|t, c]P(c)$$

Condition

		Mild	Severe	Total	Causal
Treatment -	А	15% (210/1400)	30% (30/100)	16% (240/1500)	19.4%
	В	10% (5/50)	20% (100/500)	19% (105/550)	12.9%
		$\mathbb{E}[Y t, C=0]$	$\mathbb{E}[Y t, C = 1]$	$\mathbb{E}[Y t]$	$\mathbb{E}[Y \mathrm{do}(t)]$

Causal Graph

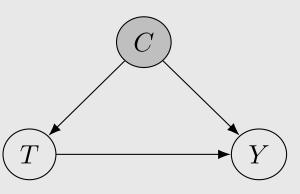


$$\mathbb{E}[Y|\mathrm{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t, C] = \sum_c \mathbb{E}[Y|t, c] P(c)$$

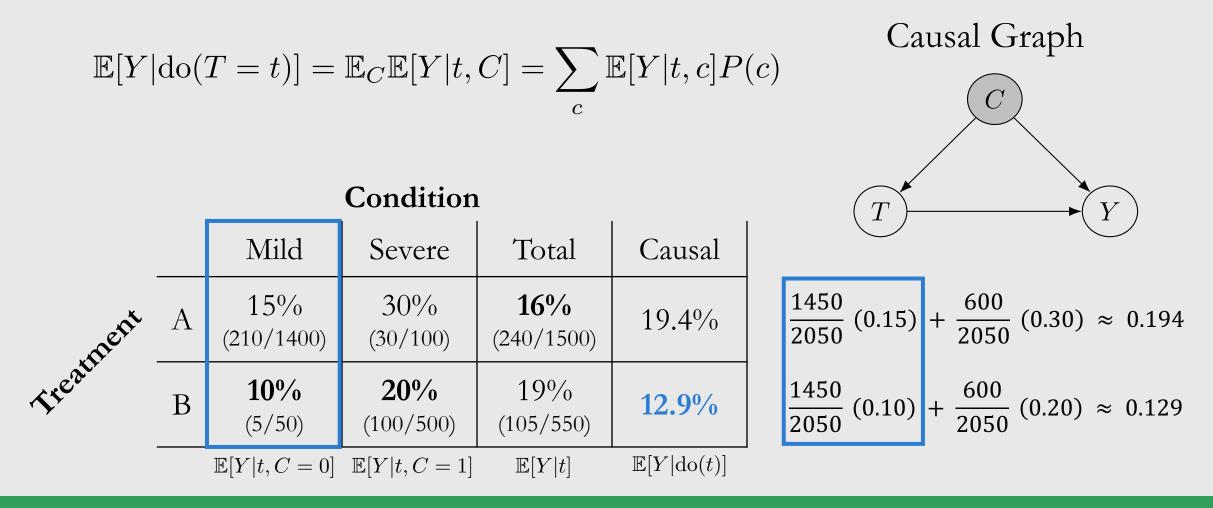
Condition

		Mild	Severe	Total	Causal
Treatment	А	15% (210/1400)	30% (30/100)	16% (240/1500)	19.4%
	В	10% (5/50)	20% (100/500)	19% (105/550)	12.9%
		$\mathbb{E}[Y t, C=0]$	$\mathbb{E}[Y t, C=1]$	$\mathbb{E}[Y t]$	$\mathbb{E}[Y \mathrm{do}(t)]$

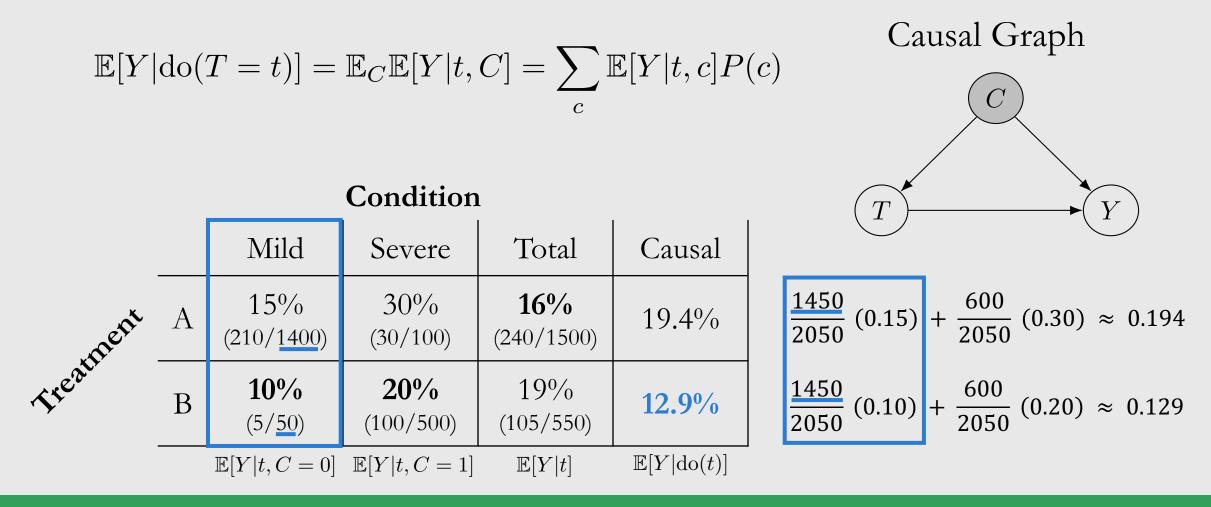
Causal Graph



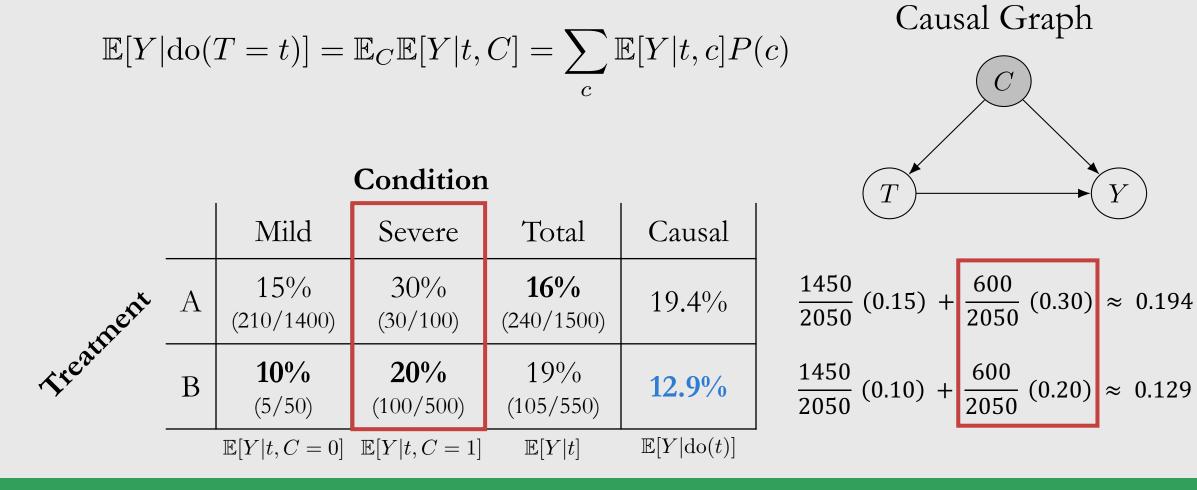
$$\frac{1450}{2050} (0.15) + \frac{600}{2050} (0.30) \approx 0.194$$
$$\frac{1450}{2050} (0.10) + \frac{600}{2050} (0.20) \approx 0.129$$



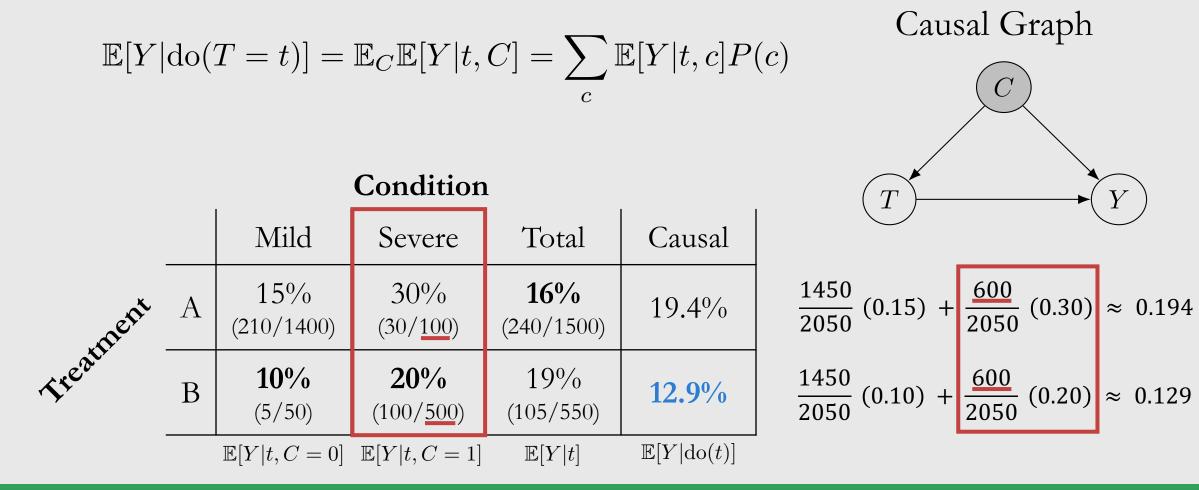
Brady Neal



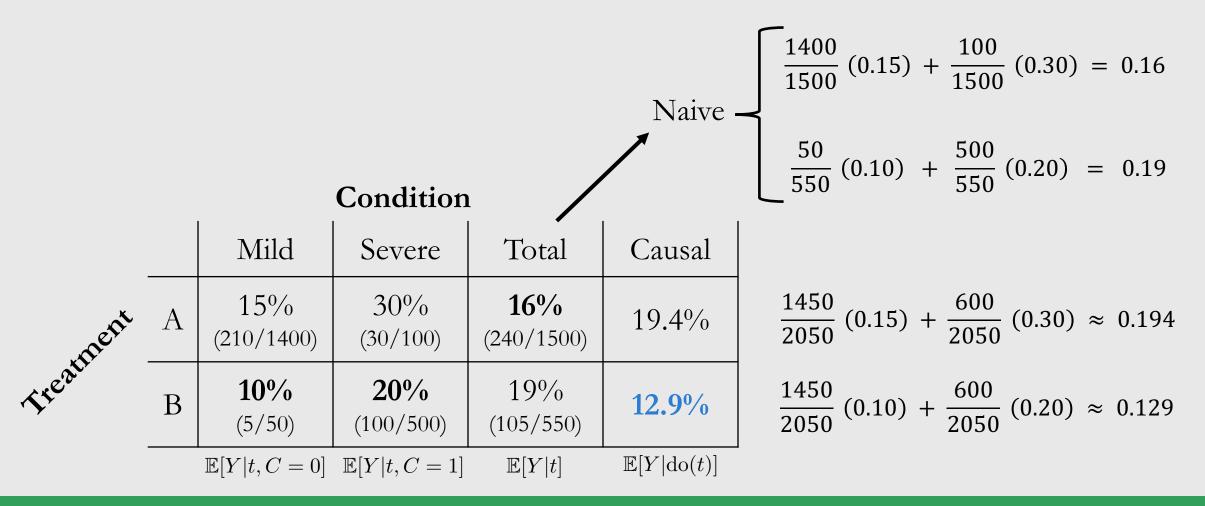
Brady Neal



Brady Neal



Brady Neal



Brady Neal

Mailing List: causalcourse.com

WELCOME TO GAUSAL INFERENCE