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What is causal inference?

Inferring the effects of any treatment/policy/intervention/ etc.




What is causal inference?

Inferring the effects of any treatment/policy/intervention/ etc.

Examples:
* Effect of treatment on a disease
* Etfect of climate change policy on emissions

e Effect of social media on mental health
* Many more (effect of X onY)



Motivating example: Simpson’s paradox
Correlation does not imply causation
Then, what does imply causation?

Causation in observational studies



Simpson’s paradox: COVID-27
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Treatment T: A (0) and B (1)

Condition C: mild (0) or severe (1)

Outcome Y: alive (0) or dead (1)




Simpson’s paradox: mortality rate table
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Simpson’s paradox: mortality rate table
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Condition
Mild Severe Total
15% 30% 16%
(210/1400) (30,/100) (240/1500)
10% 20% 19%
(5/50) (100/500) (105/550)
E[Y|T,C=0] E[Y|T,C = 1] E[Y|T]




Simpson’s paradox: mortality rate table
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Mild Severe Total
15% 30% 16%
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Simpson’s paradox: scenario 1 (treatment B)
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Simpson’s paradox: scenario 1 (treatment B)
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Simpson’s paradox: scenario 1 (treatment B)

Condition
Mild Severe Total
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Simpson’s paradox: scenario 2 (treatment A)

Condition
Mild Severe Total
15% 30% 16%
(210/1400) (30/100) (240/1500)
10% 20% 19%
(5/50) (100/500) | (105/550)




Simpson’s paradox: scenario 2 (treatment A)
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Simpson’s paradox: scenario 2 (treatment A)

Condition
Mild Sever Total
e o Treatment B
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Simpson’s paradox: scenario 2 (treatment A)

Condition
Mild Severe Total
15% 30% 16%
&e'& £ (210/1400) | (30/100) | (240/1500)
X
X% 10% 20% 19%
< = (5/50) (100/500) | (105/550)
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Correlation does not

O imply causation



Correlation does not imply causation

Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

1. Shoe-sleepers differ from non-shoe-
sleepers in a key way

2. Confounding

Total association (e.g. correlation): 7

mixture of causal and 72




Then, what does imply causation?



Potential outcomes: intuition

Inferring the effect of treatment/policy on some outcome

Take pill 6) T‘
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Don’t take pill ™ . )
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Potential outcomes: intuition

Inferring the effect of treatment/policy on some outcome

Take pill 6) T
— .
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Don’t take pill ™ . )
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causal effect




Potential outcomes: intuition

Inferring the effect of treatment/policy on some outcome

Take pill @
Y —
O

no causal effect
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Potential outcomes: notation

Yi |dO(T: 1) T : observed treatment

Y : observed outcome

do(T =1)
: used in subscript to denote a

1
§ specific unit/individual
—




Potential outcomes: notation
Yilao(r=1) = Yi(1)

T : observed treatment
dO (T — ]‘) Y : observed outcome
1 :used in subscript to denote a
specific unit/individual

— ]
§ Y; (1) : potential outcome under treatment

Y, (O) : potential outcome under no treatment

Causal effect

Yi(1) = Yi(0)




Fundamental problem of causal inference

T : observed treatment
Y : observed outcome
1 :used in subscript to denote a

Counterfactual specific unit/individual
Y; (1) : potential outcome under treatment

Y;(0) : potential outcome under no treatment

Causal effect

- Y¥3(0) =

Factual




Fundamental problem of causal inference

T : observed treatment
Y :observed outcome
1

Y;(1) =1
do(T =1) i(1) .
. , :used in subscript to denote a
Factual specific unit/individual
—
Y; (1) : potential outcome under treatment
Y;(0) : potential outcome under no treatment

Causal effect
Counterfactual Y; ( 1) _ —




Average treatment effect (ATE)

- T :observed treatment
Individual treatment effect ITE): Y; (1) — Y (0) YV - observed outcome
1 :used in subscript to denote a
specific unit/individual
Y; (1) : potential outcome under treatment

Average treatment effect (ATE):

E[E(l) — E(O)] — E[Y(l)] — E[Y(O)] YZ-(O):potential outcome under no treatment
LE]Y|T = 1] - E[Y|T = 0

Y(t) : population-level potential outcome




Motivating example: Simpson’s paradox
Correlation does not imply causation
Then, what does imply causation?

Causation in observational studies



Observational studies

Can’t always randomize treatment Ideal
* Ethical reasons (e.g. unethical to
randomize people to smoke for @ -
: >
measuring etfect on lung cancer) Causal association

* Infeasibility (e.g. can’t randomize
countries into communist/ capitalist
systems to measure effect on GDP)

Obsetvational = singas,
studies

* Impossibility (e.g. can’t change a living
person’s DNA at birth for measuring
etfect on breast cancer)

Causal association




How do we measure causal
effects in observational studies?



Solution: adjust/control for confounders

Adjust/control for the right variables W.

Causal association



Solution: adjust/control for confounders

Adjust/control for the right variables W.

If W is a sufficient adjustment set, we have

E[Y ()W = w] £ E[Y|do(T =t), W = w] = E[Y|t, w]

Causal association



Solution: adjust/control for confounders

Adjust/control for the right variables W.
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Solution: adjust/control for confounders

Adjust/control for the right variables W.

If W is a sufficient adjustment set, we have

E[Y ()W = w] £ E[Y|do(T =t), W = w] = E[Y|t, w]

Causal association



Solution: backdoor adjustment

E[Y|do(T = t)] = EwE[Y|t, W]

Causal association



Solution: backdoor adjustment

E[Y|do(T = t)] = EwE[Y|t, W]
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Solution: backdoor adjustment

E[Y|do(T = t)] = EwE[Y|t, W]

Shaded nodes are examples of sufficient adjustment sets W
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Solution: backdoor adjustment

E[Y|do(T = t)] = EwE[Y|t, W]

Shaded nodes are examples of sufficient adjustment sets W
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Solution: backdoor adjustment

E[Y|do(T = t)] = EwE[Y|t, W]

Shaded nodes are examples of sufficient adjustment sets W
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Solution: backdoor adjustment

E[Y|do(T = t)] = EwE[Y|t, W]

Shaded nodes are examples of sufficient adjustment sets W
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Solution: backdoor adjustment

E[Y|do(T = t)] = EwE[Y|t, W]

Shaded nodes are examples of sufficient adjustment sets W
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Solution: backdoor adjustment

E[Y|do(T = t)] = EwE[Y|t, W]

Shaded nodes are examples of sufficient adjustment sets W
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Application to the COVID-27 example

E[Y|do(T = t)] = EcE[Y]t, O]

Condition
Mild Severe Total
15% 30% 16%
(210/1400) (30/100) (240/1500)
10% 20% 19%
(5/50) | (100/500) | (105/550)
E[Y[t,C=0] E[Y[t,C=1 E[Y[|{
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Application to the COVID-27 example

E[Y|do(T = t)] = EcE[Y]t, O]

Condition
Mild Severe Total
15% 30% 16%
(210/1400) (30/100) (240/1500)
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Application to the COVID-27 example
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Application to the COVID-27 example

Causal Graph
ElY|do(T =t)| = EcE[Y |t,C] = ZE[Y“) P (c) S
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Application to the COVID-27 example

Causal Graph
ElY|do(T =t)| = EcE[Y |t,C] = ZE[Y“) P (c) S
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Mild Severe Total Causal
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Application to the COVID-27 example

Causal Graph
E[Y|do(T = t)] = EcE[Y[t,C] = E[Y|t,c]P(c)
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Application to the COVID-27 example

Causal Graph
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Application to the COVID-27 example

Causal Graph
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Application to the COVID-27 example
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Application to the COVID-27 example
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